Progress in Quantum Computing, Communications, & Sensing with Integrated Photonics

Galan Moody University of California Santa Barbara

> Optica Webinar December 4, 2023

PHYSICAL QUBIT ROADMAP FOR QUANTUM COMPUTER – HISTORY AND FUTURE

Source: Quantum Technologies report, Yole Développement, 2021

2

© Yole Développement, 2022

Graph below shows physical qubit roadmap (Note: for a quantum computer, 50 logical qubits minimum are required → it means 50 000 physical qubits) Physical qubits

PHYSICAL QUBIT ROADMAP FOR QUANTUM COMPUTER – HISTORY AND FUTURE

Source: Quantum Technologies report, Yole Développement, 2021

3

© Yole Développement, 2022

Graph below shows physical qubit roadmap (Note: for a quantum computer, 50 logical qubits minimum are required → it means 50 000 physical qubits) Physical qubits

PHYSICAL QUBIT ROADMAP FOR QUANTUM COMPUTER - HISTORY AND FUTURE

Source: Quantum Technologies report, Yole Développement, 2021

© Yole Développement, 2022

4

ROADMAP

OPEN ACCESS

Galan Moody^{1,*}, Volker J Sorger², Daniel J Blumenthal¹, Paul W Juodawlkis³, William Loh³, Cheryl Sorace-Agaskar³, Alex E Jones⁴, Krishna C Balram⁴, Jonathan C F Matthews⁴, Anthony Laing⁴, RECEIVED 9 February 2021 Two-photon interference Four-photon graph Controlled-not gate QD Boson sampling Waveguide-coupled NV Eight-photon processing Si source + circuit 128-emitter array in diamond QDs in waveguide Integrated multi-wavelength Boson sampling and multi-ion quantum logic Neutral atom on chip 2008 2012 2010 2014 2016 2018 2020 Universal linear optics Scattershot Boson sampling Grover's algorithm Six-photon source Quantum Processing Unit Shor's factoring Ion qubit control on chip Quantum walks Integrated SNSPD & TES

Leveraging the Mature CMOS Process for Silicon Photonics

Generate up to 4photon, 3-dimensional quantum states on chip with tunable PICs and off-chip lasers and detectors

Bristol/PsiQuantum/PKU, Nature Photonics (2023)

²⁰⁰ mm SOI

How do we go from a few qubits to a useful quantum system?

Quantum Computers -> Quantum Data Centers

encode quantum information in various properties of light, like polarization, time, frequency, etc. Network many modular devices with special functions to perform computations, storage, etc.

Electronic chip Tom transistors Hybrid bond >100,000 connections Optical I/O 200 fibers attached to chip Duantum photonic chip Sources & detectors

fundamentally powered by entanglement and entanglement distribution

PsiQuantum

- Introduction to Optical Qubits
- How We Generate Optical Qubits with Integrated
 Photonics
- Some Near-Term Applications: QKD, Entanglement Distribution, Quantum Sensing
- Outlook

Introduction to Optical Qubits

How We Generate Optical Qubits with Integrated
 Photonics

- Some Near-Term Applications: QKD, Entanglement Distribution, Quantum Sensing
- Outlook

Photonic Qubits

the photon itself is not a qubit, but there are many ways to encode a qubit with a photon

Photonic Qubits

the photon itself is not a qubit, but there are many ways to encode a qubit with a photon

Integrated Photonic Path-Encoded Qubits

manufacturable technology

1,000's components per chip with high reliability high-fidelity operations

arbitrary single-qubit gates and entangling operations loss-tolerant

ancilla qubits for heralded measurements and entanglement

Single Photon Emitters (Atoms, QDs)

Excite a two-level system, collect spontaneous fluorescence

- Emits one photon at a time (on-demand)
- Brightness decoupled from purity, indistinguishability
- Difficult to get high collection efficiency
- Apps that require one emitter (QKD)
- Apps that require more (computing)

Nonlinear Optics

- ✓ Pure, indistinguishable, heralded
- ✓ High rates (10⁹ pairs s⁻¹)
- ✓ Scalable: can make 1000's of identical copies on a wafer
- × Nonlinear optics:
 - Pump harder to get more photons = higher chance of many pairs in a time window ⁽²⁾

Comparison of Photonic Materials

Material	χ ⁽²⁾ [pm/V]	χ ⁽³⁾ [cm²/W]	Refractive Index @ 1550 nm	Bandgap [nm]	Scalability [mm]
SOI	-	6.5 × 10 ⁻¹⁴	~3.4	1100	300
Sinoi	-	2.5 × 10 ⁻¹⁵	~2	238	300
LNOI	26	5.3 × 10 ⁻¹⁵	~2.14	310	150
AlGaAsOl	180	2.6 × 10 ⁻¹³	~3.4	625	200
GaNOI	9	1.2×10^{-14}	~2.3	365	-
InGaPOI	263	1.1 × 10 ⁻¹³	~3.2	650	200
Ta ₂ O ₅	-	6.2× 10 ⁻¹⁵	~2	320	100
AIN-OI	1	2.3 × 10 ⁻¹⁵	~2	205	300
SiC-OI	12	1 × 10 ⁻¹⁴	~2.7	383	100

See: Moody, Chang, Steiner, Bowers, AVS Quantum Science 2, 041702 (2020)
 Baboux, Moody, Ducci, Nonlinear integrated quantum photonics with AlGaAs, Optica 10, 917-931 (2023)

Comparison of Photonic Materials

Material	χ ⁽²⁾ [pm/V]	χ ⁽³⁾ [cm²/W]	Refractive Index @ 1550 nm	Bandgap [nm]	Scalability [mm]
SOI	-	6.5 × 10 ⁻¹⁴	~3.4	1100	300
Sinoi	-	2.5 × 10 ⁻¹⁵	~2	238	300
LNOI	26	5.3 × 10 ⁻¹⁵	~2.14	310	150
AlGaAsOI	180	2.6 × 10 ⁻¹³	~3.4	625	200
GaNOI	9	1.2 × 10 ⁻¹⁴	~2.3	365	-
InGaPOI	263	1.1 × 10 ⁻¹³	~3.2	650	200
Ta ₂ O ₅	-	6.2× 10 ⁻¹⁵	~2	320	100
AIN-OI	1	2.3 × 10 ⁻¹⁵	~2	205	300
SiC-OI	12	1 × 10 ⁻¹⁴	~2.7	383	100

See: Moody, Chang, Steiner, Bowers, AVS Quantum Science 2, 041702 (2020)
 Baboux, Moody, Ducci, Nonlinear integrated quantum photonics with AlGaAs, Optica 10, 917-931 (2023)

Compound Semiconductor-on-Insulator (CSOI)

wafer-scale

Compound Semiconductor-on-Insulator (CSOI)

Lin Chang, Garrett D. Cole, Galan Moody and John E. Bowers

CSOI: Beyond Silicon-on-Insulator Photonics

Compound semiconductor on insulator—an emerging, potentially revolutionary platform—is enabling radically new photonic devices with superb functionality.

AlGaAsOl for Quantum Light Generation

PRX QUANTUM 2, 010337 (2021)

Featured in Physics

Ultrabright Entangled-Photon-Pair Generation from an AlGaAs-On-Insulator Microring Resonator

Trevor J. Steiner[®],¹ Joshua E. Castro,² Lin Chang,² Quynh Dang,² Weiqiang Xie,² Justin Norman,² John E. Bowers,^{1,2} and Galan Moody[®]^{2,*}

¹Materials Department, University of California, Santa Barbara, California 93106, USA ²Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106,

USA

AlGaAs-on-Insulator Microrings for Entangled-Pair Generation

- □ SFWM: Two pump photons are annihilated to create a signal and idler photon
- □ Conservation of energy and momentum dictates wavelengths
- Signal/idler are entangled in time and energy, i.e. two photons that are correlated in time and in frequency
- Process occurs randomly in time (with a CW pump), with resonant enhancement from microring cavity

AlGaAs-on-Insulator Microrings for Entangled-Pair Generation

AlGaAs-on-Insulator Microrings for Entangled-Pair Generation

Measuring Entangled Photons

Broadband Continuous Entanglement

Ultra-Efficient Entangled-Photon Pair Generation

- Introduction to Optical Qubits
- How We Generate Optical Qubits with Integrated Photonics
- Some Near-Term Applications: QKD, Entanglement Distribution, Quantum Sensing
- Outlook

Application 1: Entanglement-Based Quantum Key Distribution

Application 1: Entanglement-Based Quantum Key Distribution

Steiner, Castro, Shen, Bowers, Moody, in press, also at arXiv:2310.14112 (2023).

Application 2: On-Chip Manipulation and Control

AlGaAsOI Component Library:

- Tunable MZIs for programmable circuits
- Qubit demultiplexers
- Optimized tunable rings for maximal entangled pair rates
- Waveguide crossers

Castro et al., APL Photonics 7, 096103 (2022)

 Low-jitter, low-dark-count, highefficiency SNSPDs
 Waveguide-integrated SNSPDs

> Nature Photonics 14, 250 (2020) APL 115, 081105 (2019) APL 111, 141101 (2017)

TABLE I. Table comparing the AlGaAsOI platform with SOI and Si_3N_4 designed for integrated quantum photonics.

	AlGaAsOI (this work)	SOI	Si ₃ N ₄
Inverse Taper Coupling Loss	2.9 dB	$< 3 dB^{35}$	$2 - 3 dB^{60}$
Waveguide Crossing Loss	0.23 dB	$0.2 dB^{45}$	0.3 dB ⁴⁶
MZI Extinction Ratio	> 30 dB	$> 30 \ dB^{61}$	$> 40 \text{ dB}^{62}$
MZI Bandwidth (> 10 dB ER)	200 nm Cross 90 nm Through	$> 40 \text{ nm}^{57}$	180 nm ⁶²
MZI Heater Efficiency	$\frac{20 \text{ mW}/\pi}{(10.2 \text{ nm FSR})}$	$12 \text{ mW}/\pi^{56}$ (5.8 nm FSR)	$200 \text{ mW}/\pi^{55}$ (NA)

demonstrate indistinguishable sources, tunable entanglement for large resources of entanglement

□ 1 MHz detected rates with ~10 µW on-chip power
 □ Reconfigure to produce two of four maximally entangled Bell states

Application 3: (Towards) Quantum Sensing

Paolo Pintus

Amalu Shimamura

PIC Magnetometer

Integration of magnetooptic material above waveguide MZI (such as Ce:YIG)

Non-reciprocal phase shift + large MO effect leads to high sensitivity for magnetic field sensing

Application 3: (Towards) Quantum Sensing

Image modified from Bennett, James S., et al. "Precision magnetometers for aerospace applications: A review." Sensors 21.16 (2021): 5568.

Exciting Directions for the Next 5 Years

□ Heterogeneous PICs, leverage SOI

- Nonlinear actives
- □ SOI/SiNOI passives
- □ Foundry manufacturing

□ Systems-on-chip

- □ Lasers + sources
- □ Lasers + sources + frequency conversion
- □ Lasers + sources + microelectronics

Near-Term Applications

- Quantum satellites for space-based networking and communications
- □ Broadband entanglement generation & conversion
- High-speed (GHz) programmable quantum photonic resource states

100-200 mm, foundry

Thank You! moody@ucsb.edu

collaborators

John Bowers (UCSB) Tin Komljenovic (Nexus) Garrett Cole (Thorlabs) Mike Fanto (AFRL) Joe Lukens (ORNL, ASU) Navin Lingaraju (JH APL) Marco Liscidini (Pavia) Daniele Bajoni (Pavia) Andrew Weiner (Purdue) Yifei Li (UMass Dartmouth)

