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Spectroscopy of materials can be enhanced by the quantum coherent effects. It is the quantum coherence effects such as 
electromagnetically induced transparency and coherent population trapping that attract attention due to the increasing 
development of new applications such as high-precision spectroscopy, and large Kerr nonlinearities. Localized plasmon 
interaction in quantum confined structures strongly modify the optical and electronic properties with potential for 
manipulating light on the nanoscale. Another approach to demonstrate quantum coherent and cooperative effects is to study 
the Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles that 
has been shown to be an intrinsic property of the coupled system.

 We have demonstrated the new sensing mechanism based on an adiabatically changing electric field interacting with the 
rotational structure of the molecules with dipole moments. We have theoretically demonstrated a single low frequency gas 
detector that can be used for sensing of gas mixtures with high selectivity, accuracy, and sensitivity. The enhancement of the 
population difference between corresponding molecular levels and reached the theoretical maximum of absorption have 
been shown. Such a gas sensor can be used for a huge range of applications -- stretching from technology, sciences, control of 
environment, biology, and medicine.
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Maser pumping (at room temperature)
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Barium borate (BBO)



Quantum control and coherence in MoS2 (2D) materials
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A two-level atom interacting with quantum field
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Fig. M2. A core-shell particle: diagram, scheme of deposition on a glass substrate. 

Fig. M1. A grating with SU-8 epoxy spacer 28nm, followed by 

Rh800 embedded in thinner epoxy 18 nm layer; gratings strips 

substructure: Ti 5nm, 30 nm Ag, 40 nm alumina, 5 nm Ti, 30 

nm Ag, and 10 nm alumina. The periodicity of the gratings is  

~310 nm.  The e-beam writing parameters were as follows: dose 

was 650, 725, 750, and 800 μC/cm2 for A, B, C, and D, 

respectively; 1.2 nA; and 100 kV accelerating voltage.
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Conclusion

Properties of materials can be enhanced by the quantum coherent effects. We have shown that localized 
plasmon interaction in quantum confined structures strongly modify the optical and electronic properties with 
potential for manipulating light on the nanoscale. 

• Transparency was observed in reduced graphene oxide near nanoparticles
• The molecular gas sensors based on adiabatic manipulation of the electric field have been experimentally 

demonstrated 
• Manipulation of the absorption has been demonstrated in MoS2
• Ultra strong second harmonic generation has been shown in MoS2 promising the bright source of 

entanglement photons  
• Control of the propagation of quantum fields using “quantum prisms” 
• New area for quantum optics applications – quantum biology, biophotons, radiation produced by living 

tissues

We have demonstrated the quantum coherent effects are able to have an all-optical control, on ultrafast time 
scales, over the photonic topological transition, for applications as varied as quantum sensing, quantum 
information processing, and quantum simulations.

Thank you for your attention!
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