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Scaling of energy efficiency in digital computing
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Data source: Green500 list, data November 2023

Energy Efficiencies of Top 3 Supercomputers

https://github.com/karlrupp/microprocessor-trend-data

End of Moore’s Law?
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A basic neural network
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Vector-Matrix Multipliers
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“small” NN but >400 connections/weights

# interconnections    ( # nodes)2

Electronics
(metal wiring)

Photonics
(waveguides)

Higher energy consumption Lower energy consumption

High loss Low losses

Narrow freq. bandwidth Wide freq. bandwidth

Sensitive to interference Lower sensitivity to interference

* Analog electronics for computing is also a very active research topic.
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Outline of this talk
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• Integrated photonics for computing

– Building blocks and architectures

• A key challenge: programming the circuit

–Why is accurate programming important?

–Offline programming

–Online programming

• Conclusions
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Building blocks for integrated photonic neural networks
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B. Shastri et al., Nat. Phot. 2021     A. Tsakyridis, et al., APL Photonics 2024

Nodes – activation functionsWeights – Vector-matrix multipliers
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SOA: Semiconductor optical amplifier
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Vector-matrix multipliers – MZI meshes
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- Several configuration proposed

• Reck (triangular)

• Clements (rectangular)

• Universal generalized (UGMZI)

• Diamond

• Hexagonal mesh

• ….

- Coherent vs. incoherent operation

- MZIs can be replaced by MRRs

Tradeoffs between scalability (# couplers/phase shifters), path loss difference, circuit depth, tolerance to errors

M. Reck, et al. PRL 1994               W.R. Clements, et al., Optica 2016          D. Perez Lopez, et al., Nat. Comm. 2017   

Y. Shen, et al., Nat Phot 2017        A. Tsakyridis, Adv. Phot. Res. 2022        R. Hamerly, PRA 2022        

K. R. Mojaver Opt. Expr. 2023       A. Cem, JLT 2023

ΔΦ

Δφ
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MZI: Mach-Zehnder interferometer

MRR: Microring resonator

MMI: Multimode interferometer
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Vector-matrix multipliers – Xbar arrays
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- Several configuration proposed for the weighting elements

• MRRs

• Phase-change materials

• MZIs and Phase shifters

• …

- Coherent vs. incoherent operation

- Potential for matrix-matrix multiplication through WDM (and 

WDM+FM) up-scaling

Feldmann, et al. Nat. 2021     S. Ohno, ACS Phot. 2022     N. Youngblood, JSTQE 2022       B Dong et al, Nat Phot 2023       G. Giamougiannis JLT 2023

Potential scaling issues and very sensitive to phase-mismatch in the optical path.
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Vector-matrix multipliers – Weight & Add

1006/02/2024

- WDM dimension used for multiplexing columns

- Mainly incoherent operation

Potential scaling issues, matrix size is limited by the number of wavelengths.

B. Shastri et al., Nat. Phot. 2021     A.N. Tait et. al., JSTQE 2016    
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Vector-matrix multipliers – SOA banks
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- WDM dimension used for multiplexing columns

- Mainly incoherent operation

- Allows for weights > 1

Single platform for linear and nonlinear operations and inherent signal amplification but

higher energy consumption and added noise
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Alternative photonic NN architectures
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Reservoir computing

K. Vandoorne, et al., Nat Comm 2014 

D. Brunner, et al., Nat. Comm. 2013

C. Mesaritakis, et al., Sci. Rep. 2016

M. Borghi, et al., Sci. Rep.. 2021

B.J. Giron Castro, et al., Opt. Expr. 2024

Nonlinear propagation

B. Rahmani, et al., Nanophotonics 2022

L.G. Wright, et al., Nature 2022

Spiking networks

B. Romeira, et al., Neuromorph. Comput. Eng 2023

X. Li, et al., Science 2018        

Z. Chen, et al., Nat. Phot. 2023

Diffractive networks
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Outline of this talk
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• Integrated photonics for computing

– Building blocks and architectures

• A key challenge: programming the circuit

–Why is accurate programming important?

–Online programming

–Offline programming

• Conclusions
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Importance of programming accuracy
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Error in weights

W. Zhang, et al., Optica 2022

GPU

GPU/TPU
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From modelling error to task performance
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Training with inaccurate models leads to performance penalty during inference

A. Cem, et al., JLT 2023

MZI mesh

Active stabilization required
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W. Zhang, et al., Optica 2022
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Training photonic networks
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On-line training

(in situ)

• Performed on the specific PIC

• Iterative procedure (re-train → re-start)

M. Milanizadeh, et al., JSTQE 2020

H. Zhang, et al., ACS Phot 2021

S. Pai, et al., Science 2023

Z. Thang, et al., Opt. Expr. 2019

• Generally requires extra hardware

Off-line training 

(in silico)

• Relies on an accurate/fast PIC model

• Allows for faster re-configurability 

S. Bandyopadhyay, et al., Optica 2021

M. Fang, et al., Opt. Expr. 2019

D. Pérez, et al., Nat. Commun 2017.

• Does not capture drifts

A. Cem, et al., JLT 2023

S.M. Buckley, et al., Nanophotonics 2023
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In-situ training (I)

1706/02/2024

S. Pai, et al., Science 2023

In-situ backpropagation

• Requires monitoring – on-chip or off-chip hardware

• Effective  but scalable?

Calibration and hardware correction

• Simple sequential procedure

• Many calibration measurements required and not easily 

accounting for cross-talk effects

D.A.B. Mller, Opt. Expr. 2013

S. Bandyopadhyay, et al., Optica 2021

K.R. Mojaver, et al., Opt. Expr 2023

and many more…
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In-situ training (II)
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Auxiliary training circuit

• On-chip training

• Challenges in scaling up the circuit size

M. Filipovich, et al., Optica 2022

Gradient-approximation algorithms

• Current demonstration/algorithms are circuit-specific 

L.G. Wright, et al. Nature 2022

A. Momeni, et al., arXiv 2304.11042 2023

Forward-only algorithms

• Algorithms fine-tuned to the specific circuit 

I. Oguz, Opt. Lett. 2023

E. Martin, et al., iScience 2021
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In silico training

19Programming photonic hardware for computing06/02/02024

Accurate physical models of the 

building blocks exist.

Packing MZI/MRR meshes tightly:

• Optical crosstalk – waveguide crossing

• Thermal crosstalk – thermal diffusion

• Electrical crosstalk – voltage delivery network

• Fabrication errors/tolerances

Are simple models accurate enough?
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Loss Extinction ratio

Simple MZI mesh model
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Self & crosstalk

MZI mesh model with crosstalk

21

A. Cem, et al., OFC 2022     S. Bandyopadhyay, et al., Optica 2021
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Grey-box NN MZI mesh model
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D. Zibar, et al., JLT 2019 M. H. Tahersima , et al., OFC 2019 A. Sensong , et al., ACS Photonics 2019        …..
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Experimental setup and 3x3 MZI mesh

23

Measurements:

1. Individually sweep one voltage [0, Vπ]

2. Randomly chosen voltages
Dataset = { Voltages | Weights }

Y Ding, et al., Sci Rep. 2016
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ASE: amplified spontaneous emission

OS: optical switch

PC: polarization controller

DAC: digital analog converter

OSA: optical spectrum analyzer
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Performance comparison

24

Including thermal cross-talk improves performance but not as much as a grey-box ML model.

RMSE = 3.26 dB

RMSE = 1.44 dB

RMSE = 0.53 dB

A. Cem, et al.,  JLT 2023

-36 -25 -16 -9 -4 -1 0 1 4 9 16 25 36

Prediction error [dB]

0

0.5

1

1.5

P
D

F

Fitted model w/o crosstalk

Fitted model w/  crosstalk

Learned grey-box model
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Full model with thermal crosstalk
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M. Orlandin, et al., NUDOS 2023

1. FTDT analysis 2. 3D Thermal analysis 3. Comparison w/ measurements

Fabrication errors, electrical 

and optical crosstalk not 

modelled
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Modelling hexagonal MZI meshes
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Even for chips designed to minimize the impact of crosstalk, sensitive applications can be affected.

A. Cem, et al., IPC 2023
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ASE: amplified spontaneous emission

OSA: optical spectrum analyzer

ASE OSA
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Fitted thermal diffusion model
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RMSE = 0.42 pm
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Cross-talk compensation
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Neural Network Model (NN)

Data scarcity – MZI meshes

30

Simple Analytical Model with Thermal Crosstalk (SAM+XT)

A. Cem et al., Opt. Lett. 2023
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Simpler models are less accurate but more data-efficient to train
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Transfer learning for data-efficient modelling
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1. Train simpler model 
with experimental data

2. Generate synthetic 

data 

3. Pre-train NN model 

with synthetic data

4. Re-train NN model with 

experimental data
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Generalizable crosstalk models
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Use symmetry arguments to extend the model of a small part of the circuit

I. Teofilovic JLT 2024 (in preparation)
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Can physics help in building more efficient/generalizable models?
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Generalizable crosstalk models

32

Use symmetry arguments to extend the model of a small part of the circuit

I. Teofilovic JLT 2024 (in preparation)
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Physics-informed vs. black-box models

Programming photonic hardware for computing 3306/02/2024

Physical knowledge allows models to generalize (e.g. by extrapolating).

I. Teofilovic Frontiers 2024 (in preparation)
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Hardware-aware modelling/training

34Programming photonic hardware for computing06/02/02024

V. Shah, N. Youngblood, APL Mach. Learn. 2023

M. Moralis-Pegios, et al., JLT 2022

Include a physically-informed description of the photonic NN during training improves inference.
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Conclusions

• Accurate training of photonic circuit is 

necessary to guarantee task performance

• In-situ and in-silico approaches provided 

a plethora of specific methods but with

significant trade-offs required by every method

• No one-fits-all solution yet but lots of interesting directions

• General shift towards physics-informed modelling and online 

algorithms tuned for photonics circuits
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Questions: now and fdro@dtu.dk
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