

Programming photonic hardware for computing

Francesco Da Ros fdro@dtu.dk

The computing power challenge

Scaling of energy efficiency in digital computing

Energy Efficiencies of Top 3 Supercomputers

End of Moore's Law?

Data source: Green500 list, data November 2023

https://github.com/karlrupp/microprocessor-trend-data

DTU

Scaling of energy efficiency in digital computing

Energy Efficiencies of Top 3 Supercomputers

End of Moore's Law?

Data source: Green500 list, data November 2023

https://github.com/karlrupp/microprocessor-trend-data

A basic neural network

 $z = \frac{f_{act}}{\mathbf{w}^T \mathbf{x}}$

Vector-Matrix Multipliers

Electronics (metal wiring)	Photonics (waveguides)
Higher energy consumption	Lower energy consumption
High loss	Low losses
Narrow freq. bandwidth	Wide freq. bandwidth
Sensitive to interference	Lower sensitivity to interference

* Analog electronics for computing is also a very active research topic.

"small" NN but >400 connections/weights # interconnections∝ (# nodes)²

Outline of this talk

- Integrated photonics for computing
 - Building blocks and architectures
- A key challenge: programming the circuit
 - -Why is accurate programming important?
 - -Offline programming
 - -Online programming
- Conclusions

B. Shastri et al., Nat. Phot. 2021 A. Tsakyridis, et al., APL Photonics 2024

Vector-matrix multipliers – MZI meshes

- Several configuration proposed
 - Reck (triangular)
 - Clements (rectangular)
 - Universal generalized (UGMZI)
 - Diamond
 - Hexagonal mesh
 -
- Coherent vs. incoherent operation
- MZIs can be replaced by MRRs

Tradeoffs between scalability (# couplers/phase shifters), path loss difference, circuit depth, tolerance to errors

M. Reck, et al. PRL 1994 Y. Shen, et al., Nat Phot 2017 K. R. Mojaver Opt. Expr. 2023 W.R. Clements, et al., Optica 2016 A. Tsakyridis, Adv. Phot. Res. 2022 A. Cem, JLT 2023

D. Perez Lopez, et al., Nat. Comm. 2017 R. Hamerly, PRA 2022 MZI: Mach-Zehnder interferometer MRR: Microring resonator MMI: Multimode interferometer

Vector-matrix multipliers – Xbar arrays

- Several configuration proposed for the weighting elements
 - MRRs
 - Phase-change materials
 - MZIs and Phase shifters
 - ...
- Coherent vs. incoherent operation
- Potential for matrix-matrix multiplication through WDM (and WDM+FM) up-scaling

Potential scaling issues and very sensitive to phase-mismatch in the optical path.

Feldmann, et al. Nat. 2021 S. Ohno, ACS Phot. 2022 N. Youngblood, JSTQE 2022 B Dong et al, Nat Phot 2023 G. Giamougiannis JLT 2023

Vector-matrix multipliers – Weight & Add

- WDM dimension used for multiplexing columns
- Mainly incoherent operation

Potential scaling issues, matrix size is limited by the number of wavelengths.

B. Shastri et al., Nat. Phot. 2021 A.N. Tait et. al., JSTQE 2016

Vector-matrix multipliers – SOA banks

- WDM dimension used for multiplexing columns
- Mainly incoherent operation
- Allows for weights > 1

Single platform for linear and nonlinear operations and inherent signal amplification but higher energy consumption and added noise

SOA: Semiconductor optical amplifier

Alternative photonic NN architectures

K. Vandoorne, et al., Nat Comm 2014 D. Brunner, et al., Nat. Comm. 2013

DTU

- C. Mesaritakis, et al., Sci. Rep. 2016
- M. Borghi, et al., Sci. Rep. 2021
- B.J. Giron Castro, et al., Opt. Expr. 2024

Nonlinear propagation

B. Rahmani, et al., Nanophotonics 2022 L.G. Wright, et al., Nature 2022

X. Li, et al., Science 2018 Z. Chen, et al., Nat. Phot. 2023

B. Romeira, et al., Neuromorph. Comput. Eng 2023

Diffractive networks

Outline of this talk

- Integrated photonics for computing
 - Building blocks and architectures
- A key challenge: programming the circuit
 - -Why is accurate programming important?
 - -Online programming
 - -Offline programming
- Conclusions

Importance of programming accuracy

DTU

From modelling error to task performance

MZI mesh

Weight & add

Training with inaccurate models leads to performance penalty during inference

A. Cem, et al., JLT 2023

W. Zhang, et al., Optica 2022

Training photonic networks

DTU

On-line training (in situ)

- Performed on the specific PIC
- Generally requires extra hardware
- Iterative procedure (re-train → re-start)

Z. Thang, et al., Opt. Expr. 2019

- S. Pai, et al., Science 2023
- M. Milanizadeh, et al., JSTQE 2020

H. Zhang, et al., ACS Phot 2021

Off-line training (in silico)

- Relies on an accurate/fast PIC model
- Allows for faster re-configurability
- Does not capture drifts

D. Pérez, et al., Nat. Commun 2017. M. Fang, et al., Opt. Expr. 2019 S. Bandyopadhyay, et al., Optica 2021 A. Cem, et al., JLT 2023

In-situ training (I)

Calibration and hardware correction

- Simple sequential procedure
- Many calibration measurements required and not easily accounting for cross-talk effects

D.A.B. Mller, Opt. Expr. 2013 S. Bandyopadhyay, et al., Optica 2021 K.R. Mojaver, et al., Opt. Expr 2023 and many more...

In-situ backpropagation

- Requires monitoring on-chip or off-chip hardware
- Effective but scalable?

In-situ training (II)

Gradient-approximation algorithms

Current demonstration/algorithms are circuit-specific ٠

L.G. Wright, et al. Nature 2022 A. Momeni, et al., arXiv 2304.11042 2023

Forward-only algorithms

Algorithms fine-tuned to the specific circuit ٠

I. Oguz, Opt. Lett. 2023 E. Martin, et al., iScience 2021

Auxiliary training circuit

- **On-chip training** ٠
- Challenges in scaling up the circuit size

M. Filipovich, et al., Optica 2022

In silico training

Accurate physical models of the building blocks exist.

Packing MZI/MRR meshes tightly:

• Optical crosstalk – waveguide crossing

In Targe

In

- Thermal crosstalk thermal diffusion
- Electrical crosstalk voltage delivery network

Digital

Mode

.

• Fabrication errors/tolerances

Are simple models accurate enough?

IN SILICO

Out

Analog

Tunable Parameters

Simple MZI mesh model

Loss Extinction ratio

$$W_{ij} = \frac{L_{ij}}{L_{ij}} \prod_{k \in K_{ij}} \frac{1}{4} \left| \frac{\sqrt{ER} - 1}{\sqrt{ER} + 1} - \exp\left(\sqrt{-1}\left(\phi_k^{(0)} + \phi_k^{(2)}V_k^2\right)\right) \right|^2$$

MZI mesh model with crosstalk

DTU

Ħ

Grey-box NN MZI mesh model

Experimental setup and 3x3 MZI mesh

Measurements:

DTU

=

PSD

Y Ding, et al., Sci Rep. 2016

- 1. Individually sweep one voltage [0, V_{π}]
- 2. Randomly chosen voltages

Dataset = { Voltages | Weights }

ASE: amplified spontaneous emission OS: optical switch PC: polarization controller DAC: digital analog converter OSA: optical spectrum analyzer

Performance comparison

 $RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (w_i - \hat{w}_i)^2}$

Including thermal cross-talk improves performance but not as much as a grey-box ML model.

A. Cem, et al., JLT 2023

Full model with thermal crosstalk

1. FTDT analysis

2. 3D Thermal analysis

3. Comparison w/ measurements

M. Orlandin, et al., NUDOS 2023

DTU =

Modelling hexagonal MZI meshes

 $\phi = 0\pi$ $\phi = 0.2\pi$

 $\phi = 0.4\pi$

 $\phi = 0.6\pi$ $\phi = 0.8\pi$

 $\phi = 1\pi$

 $\phi = 1.2\pi$ $\phi = 1.4\pi$ $\phi = 1.6\pi$

 $\phi = 1.8\pi$ $\phi = 2\pi$

Even for chips designed to minimize the impact of crosstalk, sensitive applications can be affected.

ASE: amplified spontaneous emission OSA: optical spectrum analyzer

A. Cem, et al., IPC 2023

Fitted thermal diffusion model

DTU

Cross-talk compensation

DTU

Data scarcity – MZI meshes

Simple Analytical Model with Thermal Crosstalk (SAM+XT)

Neural Network Model (NN)

Simpler models are less accurate but more data-efficient to train

A. Cem et al., Opt. Lett. 2023

Transfer learning for data-efficient modelling

1. Train simpler model with experimental data

DTU

=

- 2. Generate synthetic data
- 3. Pre-train NN model with synthetic data
- 4. Re-train NN model with experimental data

Generalizable crosstalk models

Can physics help in building more efficient/generalizable models?

I. Teofilovic JLT 2024 (in preparation)

Generalizable crosstalk models

Use symmetry arguments to extend the model of a small part of the circuit

I. Teofilovic JLT 2024 (in preparation)

Physical knowledge allows models to generalize (e.g. by extrapolating).

I. Teofilovic Frontiers 2024 (in preparation)

Hardware-aware modelling/training

M. Moralis-Pegios, et al., JLT 2022

V. Shah, N. Youngblood, APL Mach. Learn. 2023

Include a physically-informed description of the photonic NN during training improves inference.

Conclusions

- Accurate training of photonic circuit is necessary to guarantee task performance
- In-situ and in-silico approaches provided a plethora of specific methods but with significant trade-offs required by every method
- No one-fits-all solution yet but lots of interesting directions
- General shift towards physics-informed modelling and online algorithms tuned for photonics circuits

Conclusions

- Accurate training of photonic circuit is necessary to guarantee task performance
- In-situ and in-silico approaches provided a plethora of specific methods but with significant trade-offs required by every method
- No one-fits-all solution yet but lots of interesting directions
- General shift towards physics-informed modelling and online algorithms tuned for photonics circuits

Questions: now and fdro@dtu.dk

<u>Acknowledgements:</u> Villum Foundation through the Villum Young Investigator project OPTIC-AI (grant no. VIL29344), the Horizon Europe research and innovation project PROMETHEUS (grant n. 101070195), the independent research fund Denmark project QUARCOM (grant no. 10.46540/2032-00161B) and the Swedish research council project BRAIN (grant no. 2022-04798).

