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0 In this presentation @sgﬂ?ﬁg%fpton

1. Introduction to distributed optical fibre sensing technology
» Single-point and multiplexed sensing systems VS. Distributed sensing systems
» Operating principle of distributed optical fibre sensing systems
2. Distributed optical fibre acoustic sensors (DAS)
» Operating principle of DAS systems
» Basic DAS sensing setup
3. Signal fading in DAS systems and mitigation strategies
» Signal fading and its effect of DAS systems
» Signal fading mitigation techniques & their implementations
4. Applications of DAS systems
» Subsea high-voltage cable condition monitoring
» Railway condition analysis

e Seismology



c Classification of Sensing Systems @sgﬁ?ﬁg%fpton

Optical Fibre Sensing Systems fall into 3 categories:
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c Distributed Optical Fibre Sensing (DOFS) @Sgﬂ?ﬁg%fpton

A distributed optical fibre sensing (DOFS) system is defined as an intrinsic sensor that is able to determine the spatial distribution
of one or more physical parameters such as temperature and vibrations at each and every point along an optical fibre.

The following figure shows what is expected from a DOFS:
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c Distributed Optical Fibre Sensing (DOFS) @sgﬂ?ﬁg%fpton

A distributed optical fibre sensing (DOFS) system is defined as an intrinsic sensor that is able to determine the spatial distribution
of one or more physical parameters such as temperature and vibrations at each and every point along an optical fibre.

Here is how it works:
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e Distributed Acoustic Sensor Output @Sgﬂ?ﬁg%fpton

A Distributed Acoustic Sensor measures
vibration at each point on the sensing fibre. The
output of DAS is visualised in a waterfall plot or
a spectrogram. Waterfall plot shows strain
variation as a function of time while spectrogram
shows frequency content of the vibrations.

Spectrogram Waterfall

Frequency (Hz)
Time (s)
PECEEEEREER PR Eey
AR

Distance (km) Distance (km)



e Sensing Procedure @Sgﬂ\’teﬁg\;‘l?\fpton

By comparing the changes in the phase-difference of the L
Rayleigh backscattered light from two regions of sensing

fibre, L meters apart, the changes in the length of that 110 7
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section of the fibre can be very accurately measured.
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e DAS Sensing Setup @Sgﬂ?ﬁg%fpton

The following diagram shows the basic building blocks of a DAS system. Due to dynamic nature of DAS measurement, very
high-speed acquisition system is need for DAS interrogator.

AOM is used as An optical filter is used to
reduce ASE noise from

Instead of direct modulation, laser is
a pulse picker.
EDFA.

externally modulated to maintain the
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The interferometer should be thermally
and acoustically insulated to eliminate
the effect of environmental noises on
the measurement.

An imbalanced Mach-Zehnder
interferometer is used to mix
the light from adjacent points
on the sensing fibre.



e Signal fading in DAS systems sgﬂ?ﬁgmfpton

» The most basic DAS systems cannot guarantee a uniform signal-to-noise ration (SNR)
for the strain measurements along the sensing fibre.

* The uneven SNR is mainly due to the spatial fluctuations in the signal levels reaching
the optical interrogator from each point on the sensing fibre. A low signal level results in
a poor SNR while a strong signal level results in a high SNR.

» The variation in the signal level at the receiver can be linked to the sensing principle of
the DAS systems which rely on interference between the Rayleigh backscattered signal
from adjacent points on the sensing fibre. Signal fading occurs when the interference
between the backscattered Rayleigh light generates a signal which is zero or close to
zero.

» DASs suffer from three types of signal fading: phase fading, polarization fading, and
intensity fading. The origin of each fading and the techniques used to mitigate each one
will be discussed next.



e Phase Fading: Root cause @Sgﬂ?ﬁg%fpton

Phase fading occurs when the phase-difference between the backscattered light from adjacent points on the fibre is a multiple
of T which translates to intensity peak or intensity null on the interference pattern. In such scenario, a small variation in the

length of the fibre translates to a minute intensity variation at the detector which, consequently, results in ‘signal fading’ at the
detector.
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e Phase Fading: Solution

University of
@Southampton

Phase fading can be eliminated by replacing a 50/50 coupler at the output of the interferometer with a symmetric 3 x 3
coupler. The 3 x 3 fiber coupler has a symmetrical structure with a 2n/3 phase difference between the output ports.
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e Phase Fading: Alternative Solution @Sgﬂ?ﬁg%fpton

An alternative solution, offered by coherent-based DAS system, is based on the use of a 90° optical hybrid at the receiver to
generate two beat signal with n/2 phase difference, hence, eliminating phase fading.
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e Polarization Fading: Root cause @Sgﬂ\:ﬁeﬁg%fpton

Polarization fading occurs when the polarization states of the backscattered signals from adjacent points on the fibre are nearly
or completely orthogonal. In such scenario, the backscattered signals will not mix to create interference pattern. Consequently,
no signal variation at the receiver will be detected (irrespective of the intensity and phase of the backscattered light) resulting in

‘signal fading’.
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e Polarization Fading: Solution @Sgﬂ?ﬁgmfpton

To eliminate polarization fading, a polarization rotator can be introduced in one arm of the interferometer to sequentially switch

the state of polarization between two orthogonal states. Using this approach, the results obtained from mixing the
backscattered signals from the orthogonal polarization state can be combined to eliminate the effect of mismatch polarization

on the measurement.
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e Polarization Fading: Results @Sgﬂ?ﬁgmpton
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e Polarization Fading: Alternative Solution @Sgﬂ?ﬁgmfpton

An alternative solution, offered by coherent-based DAS system, is based on the use of dual-polarization 90° optical hybrid at
the receiver.

In this arrangement, a polarization beam splitter (PBS) LD AOM o1

is used to split the polarization of the backscattered & | (=] A _

lighti h | polarizati h of which i ) = - -
ght into to orthogonal polarization, each of which is To sensing

then mixed with optical local oscillator (OLO) to EDFAT | fibre

generate beat signal.

Phase is calculated by combining the signals from
both polarization with inverse-variance weighting: - BPD ——

Ap = A Mgy + AyAg,

‘bay BlEQ

where
50/50

-
! 90° ol
Coupler / ! 17
o2 e > e
A = _vx 4.
T

J 1 g B it

16



e Intensity Fading: Root cause @Sgﬂ\:ﬁeﬁg%fpton

Intensity fading occurs when the backscattered Rayleigh radiations from the inhomogeneities within a certain section of the
sensing fibre are added destructively to form dips in the intensity of the backscattered coherent Rayleigh trace. At the regions
with intensity fading, the amplitude of the backscattered light is too low to allow for the phase of the Rayleigh signal to be
accurately extracted, creating blind spot in strain measurement.
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e Intensity Fading: Solution

To eliminate intensity fading, frequency diverse interrogation approach can be used in which a train of optical pulses, each
with slightly different optical frequency, are launched into the sensing fibre to generate several statistically independent
Rayleigh backscattered traces with different coherent Rayleigh noise (CRN) patterns. The results can be combined to

eliminate signal fading.
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e Intensity Fading: Results

The plots on the right show the
how frequency diverse data
acquisition can be employed to
eliminate intensity fading.

The waterfall plots on the top
right show the dynamic strains
for a system interrogated with a
single (a), four (b) and fourteen
(c) frequencies.

The plots at the bottom right
shows a) response of the DAS
to dynamic strain at a single
sensing channel as a function
of time for single frequency
(N=1) and multi-frequency (N=4
~ 14) and b) frequency
spectrum of the time-domain
data at the same sensing
channel.
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e Intensity Fading: Solution

A similar solution based on frequency
diverse interrogation is adopted in coherent-
based DAS system to eliminate intensity
fading.

The arrangement used to realise a frequency
diverse interrogation is based on a
frequency-shifting optical ring where an AOM
is used in an optical ring along with an
optical amplifier and a delay fibre to generate
a train of pulses where each pulse is
frequency shifted by the frequency of the
AOM.

Data from different frequencies can then be
combined to eliminate intensity fading.
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a Applications: Subsea Cable Monitoring

* Submarine cable failure is extremely costly due to Loss of wind

farm production and Repair costs

* These failures are predominately mechanical and occur during

the unloading and installation phase
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a Applications: Subsea Cable Monitoring @Sgﬂfﬁgmpton
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200
200

g 100 e
£ 0 100
o
& -200 i :ﬂ
30 1 =50
200 [

— 0.2
: 100
50

o
Strain (pe)

-50

-100
0 10 20 s

Time (s) 0 2 4 6 8 10 12 14 16 18
9820 9830 9840 9850 9860 9870 9880 Time (s)

Time (s)
Strain ()
e ]

S
o

Distance (m)

22



a Applications: Beam Deflection Analysis

University of
@Southampton

Condition monitoring is essential to ensuring safe and cost-effective train operation in the railroad transportation industry. Do
carry out such test in distributed format offers a significant advantages over conventional measurement techniques such as

using point strain gauges and load cells.
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a Applications: Beam Deflection Analysis @sgﬂfﬁgmpton

The waterfall plot analysis of the waterfall plot not only shows the location, and speed of each wheel on the train, but it can be
further analysed to extracted additional information such as the sleeper loading and rail deflection.
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a Applications: Beam Deflection Analysis @Sgﬂ?ﬁg‘?\fpton

The sleeper loading vs deflection diagram is of outmost importance for in track behaviour analysis.
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i : . University of
a Applications: Seismology @Soﬁ"thalf‘l'lpton
DAS systems have been used extensively to map geophysical phenomena such as: Mapping fault zones
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Lindsey et al. "llluminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing." Science 366.6469 (2019): 1103-1107.
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a Applications: Seismology @sgﬂfﬁgmpton

DAS systems have been used extensively to map geophysical phenomena such as: Vertical Seismic Profiling

o

500}

0

E

2]
E
'—

10007

1500

Yavuz et al. "Processing of multi-well offset vertical seismic profile data acquired with distributed acoustic sensors and surface orbital vibrators" Geophysical
Prospecting 69.8-9 (2021): 1664-1677.
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a Applications: Seismology @sgﬂ‘:ﬁgmpton

DAS systems have been used extensively to map geophysical phenomena such as: Detection of microseismic activities
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Verdon et al. "Microseismic monitoring using a fiber-optic distributed acoustic sensor array Microseismic monitoring using a DAS array." Geophysics 85.3 (2020):
KS89-KS99.
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