A Revolution in High-Q Integrated Photonics

Kerry Vahala California Institute of Technology

Optica Webinar Technical Group: Optical Fabrication and Testing April 25, 2022

Outline

- Background on high-Q whispering gallery resonators
- Early exploration of high-Q science:
 - Parametric oscillators
 - Harmonic generation
 - Cavity optomechanics
 - Cavity QED
 - Bio Sensing
- Recent Progress (Technology and Integration):
 - Optical Gyroscopes
 - Miniature frequency combs
 - High Coherence Sources
- Outlook

Early High-Q Microresonators

- Earliest high-Q resonators were liquid droplets or solid droplets (microspheres). Surface tension smoothed resonator finish to reduce scattering.
- Microtoroids brought this idea to silicon wafers.
- Silica, and Mg/CaF₂ resonators lowered material loss.
- Q's from 100 million to 100 billion demonstrated.
- All devices lacked coupled waveguides. Required fiber tapers or prism in order to couple light to and from resonator.

Liquid Microsphere Resonators

R. Chang, Yale (1985) A. Campillo, NRL (1986)

Silica Microsphere Resonators

Braginsky, Goredetsky, Iltchenko (1989)

Microtoroid Resonator

Armani, Kippenberg, Spillane, Vahala, Nature, (2003).

Crystalline Resonator

Savchenkov, Matsko, et al, Iltchenko, Maleki, *Physical Review Letters*, (2004).

Appearance of resonances in transmission spectrum

Very large resonant intensity buildup

- High Q gives long energy storage time (photon lifetime)
- Small resonator size leads to large energy density
- Result is high circulating intensity
- Nonlinear optical phenomena at milliWatt power levels

$$I_{\text{circulation}} = \frac{c}{V} \int_{t}^{t+\tau} P_{\text{input}} dt' \approx \frac{\mathbf{Q}}{V} \frac{c}{\omega} P_{\text{input}}$$

K. Vahala Nature (2003)

Microtoroid Resonator

Armani, Kippenberg, Spillane, Vahala, Nature, (2003).

Crystalline Resonator

Savchenkov, Matsko, et al, Iltchenko, Maleki, *Physical Review Letters*, (2004).

Important Example: Kerr Parametric Amplification & Regenerative Oscillation

(Regeneration mechanism for microcombs)

Savchenkov, Matsko, Strekalov, Mohageg, Ichenko, Maleki, *Physical Review Letters*, (2004).

Kippenberg, Spillane, Vahala, *Physical Review Letters*, (2004).

Two "pump" photons scattering to produce two photons at higher and lower frequency relative to pump.

$$P_{th} = \frac{\pi n \,\omega A}{4 \,\eta \,n_2} \,\frac{1}{FSR \,\boldsymbol{Q^2}}$$

Tunable visible light generation (Third harmonic generation)

Carmon, Vahala, Nature Physics (2007)

Cavity Optomechanics

Mechanical amplification and regenerative oscillation

Carmon, Roksari, Kippenberg, Vahala, **PRL 94**, 223902 (2005). Kippenberg, Roksari, Carmon, Scherer, Vahala, **PRL 95**, 033901 (2005). Rokhsari, Kippenberg, Carmon, Vahala, **Opt. Exp. 13**, 5293 (2005).

Optomechanical Cooling

Schliesser, et al, Vahala, Kippenberg, PRL 97 (2006) Arcizet, Cohadon, Briant, Pinard, Heidmann, Nature 444, 71 (2006) S. Gigan et al., Nature 444, 67 (2006)

Multi order-of-magnitude Range of Size Scales and Frequencies

Kippenberg, Vahala, Science (2008)

Moving forward towards present day More materials and addition of integrated waveguide coupling

Silica, silicon nitride, silicon, Mg/Ca F₂, aluminum nitride, diamond.....

Outline

- Background on high-Q whispering gallery resonators
- Early exploration of high-Q science
 - Parametric oscillators
 - Harmonic generation
 - Cavity optomechanics
 - Cavity QED

Scientific studies have greatly expanded since these early works. Modern focus areas include quantum optics and quantum information.

- Recent Progress (Technology and Integration):
 - Optical Gyroscopes
 - Miniature frequency combs
 - High Coherence Sources
- Outlook

Outline

- Background on high-Q whispering gallery resonators
- Early exploration of high-Q science
 - Parametric oscillators
 - Harmonic generation
 - Cavity optomechanics
 - Cavity QED
- Recent Progress (Technology and Integration):
 - Optical Gyroscopes
 - Miniature frequency combs
 - High Coherence Sources

Outlook

Trends:

- Greater levels of integration
- Increasing Performance
- Low SWAP

A CHIP-BASED BRILLOUIN GYROSCOPE

Commercial Optical Gyros

- Two versions:
 - Non-resonant device: optical path difference
 - Resonant device: optical frequency difference
- High performance & no moving parts
- Large in comparison to MEMs gyros & not integrable in their current versions

Non-resonant gyros

- Fiber optic gyros (FOG)
- Create huge physical path length for CW and CCW waves

$$\delta\phi = \frac{8\pi\mathbf{A}\cdot\mathbf{\Omega}}{\lambda c}$$

Resonant gyros

- Ring laser gyro (RLG)
- Create huge `effective' path length for CW and CCW waves

Brillouin Laser Action

Tomes, Carmon, Phys. Rev. Lett. (2009) Grudinin, et. al. Maleki, Phys. Rev. Lett. (2009) H. Lee, et. al, Vahala, *Nature Photonics* (2012)

Phase Matching of Brillouin : Lithographic Control

High-Q: Very low fundamental frequency noise

Schawlow-Townes-like linewidth of the Brillouin laser [1,2]:

$$S_{\nu}^{ST}(f) = \frac{\hbar\omega^{3}}{8\pi^{2}PQ_{T}Q_{ex}}(n_{T} + N_{T} + 1)$$

S-T noise varies inverse quadratic with Q factor and inversely with power.

[1] H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter and K. J. Vahala, Nat. Photon. 6, 369--373 (2012). [2] J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Exp. 20, 20170-20180 (2012).

Counter-pumped near-degenerate operation

- Counter-pumping on the same resonator mode induces CW and CCW laser operation.
- The resulting CW and CCW laser frequencies are separated by an audio-frequency rate and also share the same longitudinal mode of the resonator.
- A single pump is still used.

Gyro readout under rotation

Lai, et. al., Vahala, Nature Photonics (2020)

Allan Deviation & Drift Correction

Lai, et. al., Vahala, Nature Photonics (2020)

Earth Rotation Measurement

Lai, et. al., Vahala, Nature Photonics (2020)

Integrated Waveguide Brillouin Laser

Recent Demonstrations

Microresonator Brillouin Gyroscope

Caltech Li, Suh, Vahala, Optica **4** (2017) Lai, et. al., Vahala, Nature Photonics (2020)

UCSB, Honeywell Gundavarapu, et. al., Blumenthal Nature Photonics **13** (2019)

Integrated Interferometric Optical Gyroscope

UCSB Gundavarapu, et. al., J. Light. Technol. **36** (2018)

OEwaves Liang, et. al., Maleki, Optica **4** (2017)

Technion Maayani, et. al., Carmon, Nature **558** (2018)

FREQUENCY MICROCOMBS

Soliton Microcombs

Frequency Microcomb

Coherently pumped soliton pulses

- High Q very important
- Kerr effect provides soliton confinement and parametric gain
- · Self-referencing demonstrated

Coherent soliton Proposal

Wabnitz, Optics Lett. (1993)

Parametric oscillation & cascaded FWM in microcavities

Kippenberg, .. Vahala, *Phys. Rev. Lett.* (2004) Savchenkov, .. Maleki, *Phys. Rev. Lett.* (2004)

Cascaded Microcomb

Del Haye ... Kippenberg, Nature (2007)

Coherent pumped soliton

Leo, et. al., Nature Photonics (2010)

Early Soliton Microcombs

Silica

EPFL, Moscow state [1]

 Si_3N_4

Caltech [2]

- Herr et al.Kippenberg, Nat. Photonics 8, 145 (2014).
- 2. Yi,. et. al., Vahala, Optica 2, 1078 (2015).
- 3. Brasch et al. Kippenberg, Science 351, 357 (2016).
- Wang et al. Weiner, Opt. Express 24, 10890 (2016).
 Joshi et al. Gaeta, Opt. Lett. 41, 2565 (2016).

Mechanical Analogy of Self Referenced Frequency Comb

Hänsch & Hall

Nobel Prize 2005

- T. W. Hänsch, Nobel lecture: Passion for precision. Rev. Mod. Phys.78, 1297–1309 (2006).
- J. L. Hall, Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

- Mode locked pulses are phase synchronized with optical fields
- Three modes of operation possible:
 - 1. Microwave to optical (Frequency synthesis)
 - 2. Optical to microwave (Frequency division)
 - 3. Optical to optical (Frequency translation)

Diddams, Vahala, Udem, Science (2020)

Frequency Synthesis Mode

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635–639 (2000).

Diddams, Vahala, Udem, Science (2020)

Optical Frequency Division Mode

Diddams, Vahala, Udem, Science (2020)

Microwave: T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates and S. A. Diddams, "Generation of ultrastable microwaves via optical frequency division," Nature Photonics 5, 425 (2011)

Many Applications Being Investigated: Long term - All could ultimately be miniaturized

Dual comb spectroscopy

Suh, Yang, Vahala, *Science* (2016) Dutt, et. al., Gaeta, *CLEO* (2017)

Data transmission

Marin-Palomo, et al. Koos, *Nature* (2017) Mazur, et. al. Andrekson, arXiv:1812.11046 (2018)

Dual Comb Lidar

Suh, Vahala, *Science* (2018) Trocha, et. al., Koos, *Science* (2018). Riemensberger et al, Kippenberg, Nature (2020)

Exoplanet Detection (`Astrocomb')

Obrzud, et. al., Herr, *Nat. Phot.* (2019) Suh, et. al, Vahala, *Nat. Phot.* (2019)

Newman, et. al., Hummon, Optica, (2019)

Integrated Turnkey Soliton Microcomb

High Q SiN resonator (EPFL)

Turnkey operation

No isolator

High power DFB (UCSB)

- Kerr effect in combination with feedback creates a new operating point
- Deterministic soliton triggering

Nonlinear microresonator

Time (100 ms/div)

Turnkey microcomb: Shen, Chang, Liu ... Kippenberg, Vahala and Bowers, *Nature* 582, 365 (2020)
Battery operated microcomb: Stern, et al., Gaeta & Lipson, *Nature* (2018)
Self-injection locked microcomb: Liang, et. al., Maleki, Nat. Commun. 6, 7957 (2015)

Heterogeneous integration of laser soliton microcombs

- · Current initiated and controlled soliton generation
- Soliton states dependent on the laser-resonance detuning, controlled by laser current and phase tuner current
- · Manually tuned into soliton states, without feedback or sweep
- Very stable soliton without feedback, hours operation in lab environment

Xiang, Liu,..., Kippenberg, Bowers, 'Laser soliton microcombs heterogeneously integrated on silicon', Science 2021

Foundry-made UHQ Resonators

Ultra-high-Q resonators on an 8-inch foundry wafer with high yield

Also see: Puckett, et al..... Blumenthal, Nature Communications (2021)

Turnkey microcombs with normal dispersion

UHQ on an 8 inch wafer with high yield

UCSB

Caltech

W. Jin, et. al. K. Vahala and J. Bowers, Nature Photonics (2021)

Self-injection locking: high coherence

UHQ on an 8 inch wafer with high yield

UCSB

Caltech

W. Jin, et. al. K. Vahala and J. Bowers, Nature Photonics (2021)

HIGH COHERENCE SOURCES

UCSB Caltech Frequency noise exceeding high performance fiber lasers

High-Q spiral resonators

- 1.4-meter-long spiral resonator
- 160M intrinsic Q
- 70 dB frequency noise reduction
- 0.04 Hz short-term linewidth
- Large reduction of thermo-refractive noise (TRN)

Li, Jin, ..., Vahala, Bowers. Reaching fiber-laser coherence in integrated photonics. Optics Letters. 2021

Spiral resonator features large mode volume

and high Q factor

- High Q factor suppresses short term noise (equivalently, noise at high offset frequencies)
- Large mode volume suppresses TRN noise so that low offset frequency noise is very low.

UCSB Caltech Self-injection-locking using ultra-high-Q spiral resonators

Ultra-high-Q spiral resonators for self-injection locking (SIL)

(C)

0.8

0

-5

′=126 M O.

Transmission

Interferometer

Fit

0

Frequency (MHz)

- 1.4-meter-long spiral resonator •
- 160M intrinsic Q
- 70 dB frequency noise reduction •
- 0.04 Hz short-term linewidth •
- Large reduction of thermo-• refractive noise (TRN)

Li, Jin, ..., Vahala, Bowers. Reaching fiber-laser coherence in integrated photonics. Optics Letters. 2021

UCSB Caltech Strong suppression of TRN noise from large mode volume

Ultra-high-Q spiral resonators for self-injection locking (SIL)

(C)

0.8

0

 $Q_{0} = 164 \text{ N}$ $Q_1 = 126 \text{ M}$

-5

Fit

0

- 1.4-meter-long spiral resonator •
- 160M intrinsic Q
- 70 dB frequency noise reduction •
- 0.04 Hz short-term linewidth •
- Large reduction of thermo-• refractive noise (TRN)

Li, Jin, ..., Vahala, Bowers. Reaching fiber-laser coherence in integrated photonics. Optics Letters. 2021

High-Q Thin-Film Lithium Niobate Microresonators for High-coherence visible band generation

ROCHESTER Caltech

UCSB

Staffa, et al, Bowers, Vahala, Lin, CLEO 2022

Acknowledgement

Caltech students

Boqiang Shen Heming Wang Leo Wu Zhiquan Yuan Ki Youl Yang (Stanford) Myoung-Gyun Suh (NTT) Qifan Yang (Peking U.) Xu Yi (U. of Virginia) Hansuek Li (KAIST) Jiang Li (hQphotonics) Yu-Hung Lai (OE Waves)

Collaborators

John Bowers (UCSB) Scott Diddams (NIST) Tobias Kippenberg (EPFL) Lin Chang (UCSB) Qiang Lin (U. Rochester) Thomas Udem (MPQ)

OUTLOOK

Opportunities

- A revolution in low SWAP functions from existing devices:
 - High resolution spectrometers
 - Ultra-low-noise microwave signal sources
 - High coherence lasers (visible and near IR)
 - Optical gyroscopes
 - Optical clocks
 - Optical frequency synthesizers
 - ...

Q limits of some current photonic materials

Table 1 Properties of materials in current integrated high-Q microresonators at 1550 nm							
Material	Growth method	Structure	n _o	Reported <i>n</i> ₂ (10 ⁻²⁰ m ² W ⁻¹)	<i>n</i> ₂ (10 ⁻²⁰ m² W⁻¹)	Q _{abs} (M)	ರ _{abs} (dB m⁻¹)
SiO ₂	Wet oxidation	Amorphous	1.44	2.2	-	3900 ± 200	0.0065 ± 0.0003
Si ₃ N ₄	LPCVD	Amorphous	2.00	24	22 ± 1	290 ± 50	0.12 ± 0.02
Al _{0.2} Ga _{0.8} As	MBE	Crystal	3.28	2600	1700 ± 100	2.0 ± 0.2	28 ± 2
Ta ₂ O ₅	IBS	Amorphous	2.06	62	27 ± 3	2.4 ± 0.3	15 ± 2

Gao, Yang, et al, Papp, Bowers, Kippenberg, Vahala arXiv

Opportunities

- A revolution in low SWAP functions from existing devices:
 - High resolution spectrometers
 - Ultra-low-noise microwave signal sources
 - High coherence lasers (visible and near IR)
 - Optical gyroscopes
 - Optical clocks
 - Optical frequency synthesizers
 - ...
- Future possibilities (fiber-like-loss on a chip):
 - FOG and RLG equivalents on chip
 - EDFAs on chip
 - Fiber combs on chip
 - True time delay
 - ...

THANK YOU !

www.vahala.caltech.edu