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Propagation in an inhomogeneous mediumImaging through turbulence



Source : GEMINI Observatory

A solution : Adaptive Optics



scatterer

Single scattering

Multiple Scattering
Ballistic Light

Scattering



typical biological tissues
Ø scattering mean free path
Ø transport mean free path 

ls ' 50� 100µm
l⇤ ' 1mm

Biological tissues are scattering
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« Deep » multiple scattering regime :
✗ No more ballistic light
✗ Strong spatial and temporal perturbation
✓ Coherence is maintained

3D random Sample
« white paint »



A speckle grain = 
• Sum of different paths with random phases

= random walk in the complex plane
• Size limited by diffraction
• unpolarized speckle = 2 independent speckles 

Monochromatic regime

SPECKLE : complex distribution … but coherent and deterministic

The speckle pattern

286 NATURE PHOTONICS | VOL 6 | MAY 2012 | www.nature.com/naturephotonics

Controlling the time and frequency degrees of freedom
!e presence of many spatial channels in the optical domain pro-
vides great "exibility for wavefront-shaping experiments. However, 
wavefront shaping only works for a narrow frequency range. By opti-
mizing the focus intensity and then detuning the laser, van Beijnum 
and co-workers56 have shown that the e#ect of optimization is lost 
a$er the laser has been detuned by the speckle correlation frequency 
δω. Rather than being a limitation, this allows for even more degrees 
of freedom to control the waves36. An incident light pulse excites 
all the modes that exist within its bandwidth (Fig. 3a). A source 
emits light with many frequency components, each of which causes 
a di#erent speckle pattern. Similarly, tuning the phase of multiple 

spatial components makes it possible to control the relative phases 
and amplitudes of the frequency components, thereby allowing the 
transmitted speckles to interfere constructively at a chosen time. 
!is extra dimension of control drastically increases the possibili-
ties o#ered to an experimentalist.

An experimentalist can select a point in space and measure 
the phase and amplitude of each uncorrelated frequency compris-
ing the spectrum of the &eld. A very basic way of controlling this 
transient wave &eld involves adding all the uncorrelated speckles in 
phase on the chosen point at a speci&c time. !is control can be 
achieved by conjugating the phase of each component of the meas-
ured polychromatic wave &eld and sending it again through the 

Optimized
Initial

N
or

m
al

ize
d 

am
pl

itu
de

 (a
.u

.)

Time delay τ (ps)

Distance 27 cm (~600λ) 

40 mm

16 mm

With scattering 
medium In water

A
m

pl
itu

de

10 µs10 µs

1
2
3
4
5

1
2
3
4
5

TRM Receivers

1
2
3
4
5

Sample
SLM

Reference path

a

b c

0 100 200 300 400
Time (µs)

0

2

4

6

8

10

12

0 2 4 6 8 10

Feedback

Detector

Figure 3 | Taking advantage of the temporal degrees of freedom in complex media. a, A red laser beam creates a speckle pattern after propagating 
through a multiply scattering medium. Shifting the laser frequency by more than the correlation frequency of the medium provides an uncorrelated 
speckle pattern, which is depicted here by the green and blue speckles. A focus in space and time can be created by adjusting the phases and amplitudes 
of the frequency components. b, Top: Selective focusing of ultrasound waves using time reversal. A 1-μs-duration pulse centred at 1.5 MHz is emitted 
from each transducer of a TRM and propagates through a multiply scattering medium towards five receivers. Middle: Example of a 400-μs-long impulse 
response acquired from a TRM/receiver couple. Bottom: Time reversal is used to focus waves spatiotemporally onto five independent foci through the 
scattering medium; a single spot is measured through water. c, Optical pulse transmission through a disordered medium. A 65 fs pulse from a Ti:sapphire 
laser is passed through an SLM before it hits a scattering sample. The scattered pulse has a duration of several picoseconds. Using a reference path, the 
transmitted amplitude is measured at a single point in space and time, at the detector. The spatial phases of the incident beam are modified to optimize 
this amplitude. The result is a short transmitted pulse at the target location and time. Figure b reproduced from ref. 105, © 2003 APS. Figure c adapted 
from ref. 65, © 2011 APS.

REVIEW ARTICLE NATURE PHOTONICS DOI: 10.1038/NPHOTON.2012.88

A.P Mosk et al. Nature Photonics, May 2012

Polychromatic (i.e. dispersion)

Spectral dependence
=

confinement time of 
light in the medium



« EASY »
(ballistic) HARD 

(OCT, multiphoton,confocal)

Imaging through scattering

(Until 2007)



Hypothesis : linearity, reversibility of wave equation

A little help from acoustics : Time-reversal techniques

Step 1: record

Spatial and temporal focusing

A. Derode, P. Roux et M. Fink, Phys. Rev. Lett., 75, 4206 (1995)

Step 2: playback



Spatial shaping tools in optics

Liquid crystals
Spatial Light Modulators : 

>1 million pixel
Phase modulation
course : 1 microns

limited speed :  50Hz

Deformable Mirrors :

10-100 actuators typical
course : 10-20 microns 

Speed > kHz

MEMS
Spatial Light Modulators :

Texas DLP/DMD 
>8 million pixel
binary ON/OFF

very fast speed : 24kHz

Not good ! Tool of choice
…until now!

Very promising…
…but need tweeking



Wavefront shaping with CW light 

Vellekoop and Mosk, Optics Letter, 2007

No shaping Optimized Wavefront

Iterative optimization algorithm

Detector

« Perfect » focus
Diffraction-limited
~« Extreme » AO
~phase conjugation
Vellekoop et al., Nat. Photonics (2010)



Spatial Light Modulator Output speckle

(Simulations)

Optimization of optical intensity

Iterative approach:
à Optical feedback optimization

Focusing through a scattering medium



Spatial Light Modulator

(Simulations)

Output speckle Optimization of optical intensity

Iterative approach:
à Optical feedback optimization

Focusing through a scattering medium

« Perfect » Point spread function Vellekoop et al., Nat. Photonics (2010)



camera or
single detector

laser

Wavefront shaping
device (DMD, SLM …)

Sample

A typical experimental setup



SLM : array of pixels Linear system CCD camera : array of pixels

= ==

A general formalism : the transmission matrix

measurement of the TM : see Popoff et al. Phys. Rev. Lett. 104,100601 (2010) 



Plane wave illumination

SL
M

SL
M

SL
M

CCD
CCD

CCD

sample

sample

sample

Exploiting the TM : focusing

Popoff et al. Phys. Rev. Lett. 104,100601 (2010) 

Computational “Phase-conjugation”



Controlling polychromatic / pulsed light? 

Spatiospectral matrix / time-resolved matrix
•Broadband – femtosecond pulse
•Temporal control +focusing
•Coherent control
•Multiphoton microscopy

Mounaix et al. , Phys. Rev. Lett. 116, 253901 (2016) 
Phys. Rev. A 94, 041802 (2016) Optica 4, 1289-1292 (2017) 

Non-linear excitation



Why « lensless » imaging ? 

Vellekoop, Ivo M., Aart Lagendijk, and A. P. Mosk. "Exploiting disorder for 
perfect focusing." Nature photonics 4.5 (2010): 320-322.

Resolution
given by the 

scattering
medium

The lens is
irrelevant!



Why « lensless » imaging : The optical memory effect

Animation credit : Jacopo Bertolotti

IF the medium is

thin or forward-

scattering

You have « some » 

field of view

• Osnabrugge, G., et al. "Generalized optical memory effect." Optica 4.8 (2017): 886-892.
• Judkewitz, B., et al. "Translation correlations in anisotropically scattering media." Nature physics 11.8 (2015): 684-689
• Schott, S et al. (2015). Characterization of the angular memory effect of scattered light in biological tissues. Optics express, 23(10), 13505-13516.
• Vellekoop, I. M., & Aegerter, C. M. (2010). Scattered light fluorescence microscopy: imaging through turbid layers. Optics letters, 35(8), 1245-1247.
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The information age in optics: Measuring the transmission matrix

Elbert G. van Putten and Allard P. Mosk

Complex Photonic Systems, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box
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The transmission of light through a disordered medium is described in microscopic detail by a high-dimensional

matrix. Researchers have now measured this transmission matrix directly, providing a new approach to control

light propagation.

Subject Areas: Optics

A Viewpoint on:

Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in

Disordered Media

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara and S. Gigan
Phys. Rev. Lett. 104, 100601 (2010) – Published March 8, 2010

Optical elements such as lenses and polarizers are
used to modify the propagation of light. The transfor-
mations of the optical wave front that these elements
perform are described by simple and straightforward
transmission matrices (Fig. 1). The formalism of trans-
mission matrices is also used to microscopically de-
scribe the transmission through more complex optical
systems, including opaque materials such as a layer of
paint in which light is strongly scattered. A micro-
scopic description of this scattering process requires a
transmission matrix with an enormous number of ele-
ments. Sébastien Popoff, Geoffroy Lerosey, Rémi Carmi-
nati, Mathias Fink, Claude Boccara, and Sylvain Gigan
of the Institut Langevin in Paris now report in Physi-

cal Review Letters an experimental approach to micro-
scopically measure the transmission matrix for light
[1]. Knowledge of the transmission matrix promises a
deeper understanding of the transport properties and
enables precise control over light propagation through
complex photonic systems.

At first sight, opaque disordered materials such as pa-
per, paint, and biological tissue are completely different
from lenses and other clear optical elements. In disor-
dered materials all information in the wave front seems
to be lost due to multiple scattering. The propagation
of light in such materials is described very successfully
by a diffusion approach in which one discards phase in-
formation and considers only the intensity. An impor-
tant clue that phase information is very relevant in dis-
ordered systems was given by the observation of weak
photon localization in diffusive samples [2, 3]. Even ex-
tremely long light paths interfere constructively in the
exact backscattering direction, an interference effect that
can be observed in almost all multiple scattering sys-
tems. Interference in combination with very strong scat-

FIG. 1: Two optical elements fully characterized by their trans-
mission matrix, which relates the incident wave front to the
transmitted one. In the case of a thin lens, the transformation
of the wave front is described by a 2 ⇥ 2 matrix operating on a
vector describing the wave front curvature [27]. For more com-
plex elements such as a sugar cube the transmission matrix
operates in a basis of transversal modes, which is very large.
Full knowledge of the transmission matrix enables disordered
materials to focus light as lenses.

tering will even bring diffusion to a halt when condi-
tions are right for Anderson localization [4]. Since light
waves do not lose their coherence properties even af-
ter thousands of scattering events, the transport of light
through a disordered material is not dissipative at all,
but coherent, with a high information capacity [5].

A propagating monochromatic light wave is charac-
terized by the shape of its wave front. By choosing a
suitable basis, the wave front incident on a sample can
be decomposed into orthogonal modes. Typical choices

DOI: 10.1103/Physics.3.22
URL: http://link.aps.org/doi/10.1103/Physics.3.22
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Take-home 
message

Any linear
optical

element can

be emulated

See : Mosk, Allard P., et al. "Controlling waves in space and time for imaging and focusing in complex media." Nature photonics 6.5 (2012): 283-292.



Which feedback to go inside?

R.Horstmeyer,R. Haowen, and C. Yang 
Guidestar-Assisted Wavefront-Shaping Methods for Focusing Light Into Biological Tissue
Nature Photonics 9 (9): 563–71. (2015)

The « Guidestar » 
catalog

• NL Fluorescence (2P,3P…)
• Second Harmonic

generation
• Ultrasound
• Photoacoustics
• Coherence-gating
• Small displacement
• …



(1) Computational imaging (2) Optical Computing

Machine Learning

Zebrafish Brain (Betzig
Lab)

Extract in-depth complex 
optical information



(1) Computational
imaging

Zebrafish Brain (Betzig
Lab)

Extract in-depth complex 
optical information



Neural networks for imaging through scattering media

P. Caramazza, O. Moran, R. Murray-Smith and D. Faccio, 
Nat. Commun. (2019)A.Turpin, I. Vishniakou, and J. d. Seelig, 132 Opt. Express 26, 

30911 (2018)

Only to see « through » scattering media



Physics-based 2-layer neural network

A. d’Arco et al, in preparation

Physical System

2-layer neural network interpretation

A. D’Arco, F. Xia, et al. Optics Express (2022)

Training network
= 

determining TMs



(2) Improve computing with 
optics 

Machine Learning



The deep Learning revolution

Image: Waldrop, PNAS (2019)

• Many (10s to 100s) Layers

• Each layer = a matrix multiplication

• 10s BILLIONS weights / parameters

• Huge datasets

• Training and Inference are 
extremely demanding

See: Deep learning, LeCun, Bengio & Hinton, Nature 521, 436 (2015)



AI and Compute

https://openai.com/blog/ai-and-compute/

PetaFlop/s.days

x2
every

3.4 months !

x300.000
(Moore: x7)

A different computing paradigm is
needed : neuromorphic approach ? 

Training a single AI Models
can take thousands of GPU.days

and cost 10s of millions of $

https://openai.com/blog/ai-and-compute/


computing with light
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Conventional computers are organized around a centralized 
processing architecture (that is, with a central processor and 
separated memory), which is suited to running sequential, 

digital, procedure-based programs. Such an architecture is inef-
ficient for computational models that are distributed, massively 
parallel and adaptive, most notably those used for neural net-
works in artificial intelligence. Artificial intelligence is an attempt 
to approach human-level accuracy in tasks that are challenging for 
traditional computers but easy for humans. Major achievements 
have been realized by machine learning algorithms based on neural 
networks1, which process information in a distributed fashion and 
adapt to past inputs rather than being explicitly designed by a pro-
grammer. Machine learning has had an impact on many aspects of 
our lives, with applications ranging from translating languages2 to 
cancer diagnosis3. Neuromorphic engineering is partly an attempt to 
move elements of machine learning and artificial intelligence algo-
rithms to hardware that reflects their massively distributed nature. 
Matching hardware to algorithms will potentially lead to faster 
and more energy-efficient information processing. Neuromorphic 
hardware is also applied to problems outside machine learning, 
such as robot control, mathematical programming and neurosci-
entific hypothesis testing4,5. Massively distributed hardware relies 
heavily—more so than other computer architectures—on mas-
sively parallel interconnections between lumped elements (that 
is, neurons). Dedicated metal wiring for every connection is not 
practical. Current state-of-the-art neuromorphic electronics there-
fore use some form of shared digital communication bus that is 
time-division multiplexed, trading bandwidth for interconnectiv-
ity4. Optical interconnects could negate this trade-off and thus have 
the potential to accelerate machine learning and neuromorphic 
computing.

Light is established as the communication medium of tele-
coms and datacentres, but it has not yet found widespread use in 
information processing and computing. The same properties that 
allow optoelectronic components to excel at communication are at 
odds with the requirements of digital gates6. However, non-digital 

computing models, such as neural networks, could be more condu-
cive to being implemented in photonics. The goal of neuromorphic 
photonic processors should not be to replace conventional comput-
ers, but to enable applications that are unreachable at present by 
conventional computing technology—those requiring low latency, 
high bandwidth and low energies7. Examples of applications for 
ultrafast neural networks include:

t� Enabling fundamental physics breakthroughs: qubit read-out 
classi!cation8, high-energy-particle collision classi!cation9,10, 
fusion reactor plasma control11

t� Nonlinear programming: solving nonlinear optimization prob-
lems (robotics, autonomous vehicles, predictive control)12 and 
partial di"erential equations13

t� Machine learning acceleration: vector–matrix multiplications14, 
deep learning inference15, ultrafast or online learning16

t� Intelligent signal processing: wideband radio-frequency signal 
processing17, !bre-optic communication18,19

Photonic circuits are well suited to high-performance imple-
mentations of neural networks for two predominant reasons: inter-
connectivity and linear operations. Connections between pairs of 
artificial neurons are described by a scalar synaptic weight (a pri-
mary memory element), so the layout of interconnections can be 
represented as a matrix–vector operation, where the input to each 
neuron is the dot product of the output from connected neurons 
attenuated by a weight vector. Optical signals can be multiplied by 
transmission through tunable waveguide elements, and they can be 
added through wavelength-division multiplexing (WDM) by accu-
mulation of carriers in semiconductors20,21, electronic currents22,23 
or changes in the crystal structure of a material induced by pho-
tons24. Neural networks require relatively long-range connections 
to perform non-trivial distributed information processing. When 
comparing metal wire connections with photonic waveguides, opti-
cal signals experience lower attenuation and generate less heat (the 
latter provided the light source if off-chip) as a function of distance. 

Photonics for artificial intelligence and 
neuromorphic computing
Bhavin J. Shastri! !1,2,7 ✉, Alexander N. Tait! !2,3,7 ✉, T. Ferreira de Lima! !2, Wolfram H. P. Pernice! !4, 
Harish Bhaskaran! !5, C. D. Wright! !6 and Paul R. Prucnal2

Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration 
platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class 
of information processing machines. Algorithms running on such hardware have the potential to address the growing demand 
for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance 
and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, 
particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complemen-
tary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuro-
morphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet 
those challenges.
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Conventional computers are organized around a centralized 
processing architecture (that is, with a central processor and 
separated memory), which is suited to running sequential, 

digital, procedure-based programs. Such an architecture is inef-
ficient for computational models that are distributed, massively 
parallel and adaptive, most notably those used for neural net-
works in artificial intelligence. Artificial intelligence is an attempt 
to approach human-level accuracy in tasks that are challenging for 
traditional computers but easy for humans. Major achievements 
have been realized by machine learning algorithms based on neural 
networks1, which process information in a distributed fashion and 
adapt to past inputs rather than being explicitly designed by a pro-
grammer. Machine learning has had an impact on many aspects of 
our lives, with applications ranging from translating languages2 to 
cancer diagnosis3. Neuromorphic engineering is partly an attempt to 
move elements of machine learning and artificial intelligence algo-
rithms to hardware that reflects their massively distributed nature. 
Matching hardware to algorithms will potentially lead to faster 
and more energy-efficient information processing. Neuromorphic 
hardware is also applied to problems outside machine learning, 
such as robot control, mathematical programming and neurosci-
entific hypothesis testing4,5. Massively distributed hardware relies 
heavily—more so than other computer architectures—on mas-
sively parallel interconnections between lumped elements (that 
is, neurons). Dedicated metal wiring for every connection is not 
practical. Current state-of-the-art neuromorphic electronics there-
fore use some form of shared digital communication bus that is 
time-division multiplexed, trading bandwidth for interconnectiv-
ity4. Optical interconnects could negate this trade-off and thus have 
the potential to accelerate machine learning and neuromorphic 
computing.

Light is established as the communication medium of tele-
coms and datacentres, but it has not yet found widespread use in 
information processing and computing. The same properties that 
allow optoelectronic components to excel at communication are at 
odds with the requirements of digital gates6. However, non-digital 

computing models, such as neural networks, could be more condu-
cive to being implemented in photonics. The goal of neuromorphic 
photonic processors should not be to replace conventional comput-
ers, but to enable applications that are unreachable at present by 
conventional computing technology—those requiring low latency, 
high bandwidth and low energies7. Examples of applications for 
ultrafast neural networks include:

t� Enabling fundamental physics breakthroughs: qubit read-out 
classi!cation8, high-energy-particle collision classi!cation9,10, 
fusion reactor plasma control11

t� Nonlinear programming: solving nonlinear optimization prob-
lems (robotics, autonomous vehicles, predictive control)12 and 
partial di"erential equations13

t� Machine learning acceleration: vector–matrix multiplications14, 
deep learning inference15, ultrafast or online learning16

t� Intelligent signal processing: wideband radio-frequency signal 
processing17, !bre-optic communication18,19

Photonic circuits are well suited to high-performance imple-
mentations of neural networks for two predominant reasons: inter-
connectivity and linear operations. Connections between pairs of 
artificial neurons are described by a scalar synaptic weight (a pri-
mary memory element), so the layout of interconnections can be 
represented as a matrix–vector operation, where the input to each 
neuron is the dot product of the output from connected neurons 
attenuated by a weight vector. Optical signals can be multiplied by 
transmission through tunable waveguide elements, and they can be 
added through wavelength-division multiplexing (WDM) by accu-
mulation of carriers in semiconductors20,21, electronic currents22,23 
or changes in the crystal structure of a material induced by pho-
tons24. Neural networks require relatively long-range connections 
to perform non-trivial distributed information processing. When 
comparing metal wire connections with photonic waveguides, opti-
cal signals experience lower attenuation and generate less heat (the 
latter provided the light source if off-chip) as a function of distance. 

Photonics for artificial intelligence and 
neuromorphic computing
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Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration 
platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class 
of information processing machines. Algorithms running on such hardware have the potential to address the growing demand 
for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance 
and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, 
particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complemen-
tary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuro-
morphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet 
those challenges.
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Inference in artificial intelligence with deep 
optics and photonics

Gordon Wetzstein1 ✉, Aydogan Ozcan2, Sylvain Gigan3, Shanhui Fan1, Dirk Englund4,  
Marin Soljačić4, Cornelia Denz5, David A. B. Miller1 & Demetri Psaltis6

Arti!cial intelligence tasks across numerous applications require accelerators for  
fast and low-power execution. Optical computing systems may be able to meet these 
domain-speci!c needs but, despite half a century of research, general-purpose  
optical computing systems have yet to mature into a practical technology. Arti!cial 
intelligence inference, however, especially for visual computing applications, may 
o"er opportunities for inference based on optical and photonic systems. In this 
Perspective, we review recent work on optical computing for arti!cial intelligence 
applications and discuss its promise and challenges.

The capacity of computing systems is in an arms race with the mas-
sively growing amount of visual data they seek to understand. In a 
range of applications—including autonomous driving, robotic vision, 
smart homes, remote sensing, microscopy, surveillance, defence  
and the Internet of Things—computational imaging systems record 
and process unprecedented amounts of data that are not seen by a 
human but instead are interpreted by algorithms built on artificial 
intelligence (AI).

Across these applications, deep neural networks (DNNs) are rapidly 
becoming the standard algorithmic approach for visual data process-
ing1–3. This is primarily because DNNs achieve state-of-the-art results 
across the board—often by a large margin. Recent breakthroughs in 
deep learning have been fuelled by the immense processing power 
and parallelism of modern graphics processing units (GPUs) and the 
availability of massive visual datasets that enable DNNs to be efficiently 
trained using supervised machine learning strategies.

However, high-end GPUs and other accelerators running increas-
ingly complex neural networks are hungry for power and bandwidth; 
they require substantial processing times and bulky form factors. 
These constraints make it challenging to adopt DNNs in edge devices, 
such as cameras, autonomous vehicles, robots or Internet of Things 
peripherals. Consider vision systems in autonomous cars, which have 
to make robust decisions instantaneously using limited computational 
resources. When driving at high speed, split-second decisions can 
decide between life or death. Indeed, virtually all edge devices would 
benefit from leaner computational imaging systems, offering lower 
latency and improvements in size, weight and power.

The computing requirements of the two stages of a DNN—training 
and inference—are very different. During the training stage, the DNN 
is fed massive amounts of labelled examples and, using iterative meth-
ods, its parameters are optimized for a specific task. Once trained, the 
DNN is used for inference where some input data, such as an image, 
is sent through the network once, in a feedforward pass, to compute 
the desired result. GPUs are used for inference in some applications, 
but for many edge devices this is impractical, owing to the aforemen-
tioned reasons.

Despite the flexibility of electronic AI accelerators, optical neural 
networks (ONNs) and photonic circuits could represent a paradigm 
shift in this and other machine learning applications. Optical comput-
ing systems promise massive parallelism4 in conjunction with small 
device form factors and, in some implementations, little to no power 
consumption5. Indeed, optical interconnects that use light to achieve 
communications in computing systems are already widely used in data 
centres today, and the increasing use of optical interconnects deeper 
inside computing systems is probably essential for continued scaling. 
Unlike electrical interconnect technologies, optical interconnects 
offer the potential for orders of magnitude improvements in band-
width density and in energy per bit in communications as we move to 
deeper integration of optics, optoelectronics and electronics4,6–8. Such 
improved interconnects could allow hybrid electronic–optical DNNs, 
and the same low-energy, highly parallel4 integrated technologies could 
be used as part of analogue optical processors.

General-purpose optical computing has yet to mature into a practical 
technology despite the enormous potential of optical computers and 
about half a century of focused research efforts9,10. However, inference 
tasks—especially for visual computing applications—are well suited 
for implementation with all-optical or hybrid optical–electronic sys-
tems. For example, linear optical elements can calculate convolutions, 
Fourier transforms, random projections and many other operations 
‘for free’—that is, as a byproduct of light–matter interaction or light 
propagation11–15. These operations are the fundamental building blocks 
of the DNN architectures that drive most modern visual computing 
algorithms. The possibility of executing these operations at the speed 
of light, potentially with little to no power requirements, holds trans-
formative potential that we survey in this Perspective.

Historical overview of optical computing
Research into neuromorphic computing was intense in the 1980s 
(Fig. 1). Following early pioneering work16–21, Rumelhart, Hinton and 
Williams published a deeply influential paper in 1986 describing the 
error-backpropagation method for training multi-layer networks22. 
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Optics has distinct advantages…
• Low energy consumption
• Easy interconnect – Multiplexing
• Low latency + blazzing speed

… and some disadvantages:
• Bulky
• Tricky non-linearities
• Storage
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Fig. 4 | Overview of deep optics and photonics applications I. a–c, All-optical 
or hybrid optical–electronic image classification can be achieved by 
propagating an optical wave field through optimized layers of scatterers (a), 
through a modified optical 4f system that implements a single layer of a 
convolutional neural network (in this case, an image, Iin, of a horse; b), or 
through a complex medium that creates speckle (c). Amp., amplitude; a.u., 
arbitrary units; ReLU, rectified linear unit; FC, fully connected; DMD, digital 
micromirror device; ω1,2,3, pre-trained classes of numbers; Xf, measurement.  
d, e, In the microscopy domain, AI has been demonstrated to enable 

applications such as virtual histological staining of unlabelled tissue (d) or 3D 
virtual refocusing of fluorescence microscopy images using the Deep-Z 
algorithm compared to a ground-truth scan captured with an appropriately 
focused widefield microscope (e). n, number of pixels of input image; ↓2, 
downsampling by a factor of 2; →, concatenation; ROI, region of interest; z, 
depth of scan. Figures adapted or reproduced with permission from ref. 14  
(a; copyright IEEE), ref. 13 (c), ref. 96 (d) and ref. 85 (e); adapted under a CC BY 4.0 
licence from ref. 15 (b).
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Deep learning also creates new opportunities to make optical micros-
copy task-specific, in which the function of the microscope will expand 
beyond the observation of object features to also include inference—for 
example recognition of spatial or temporal features of interest through 
an optimized integration of optical and electronic computation. We 
believe that deep learning-enabled microscope designs of the future 
will use task-specific optical processors at their front end. Depending 
on the nature of the specific microscopic imaging task, the front-end 
computational optical interface that connects the illumination to the 
sample or the sample to the optoelectronic detector array will be opti-
mized similar to the recent demonstrations of diffractive systems14,15,99 

that perform computation through diffraction of light. This paradigm 
will also change the design of the optoelectronic detector array itself 
(for example, the configuration of the pixels and their positions, shapes 
and count), making the detector interface between optics and electron-
ics another trainable parameter space. Therefore, the optical front end, 
the optoelectronic detectors and the back-end electronic computation 
form an entirely trainable microscope.

We argue that these new types of ‘thinking microscopes’ can miti-
gate some of the challenges associated with current microscope 
designs, which often acquire unnecessarily large amounts of data, 
creating a massive burden for data sampling, storage, processing and 
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Fig. 5 | Overview of deep optics and photonics applications II. a, b, In 
imaging applications, deep optics enables single-pixel cameras that capture 
coded projections of a scene with a single photodetector and computationally 
recover them (a) or neural sensors that use optimized pixel exposures to 
capture temporally superresolved videos (b). DMD, digital micromirror device; 
A/D, analogue-to-digital converter; RX, receiver; TX, transmitter. c–g, Vowel 
recognition can be achieved using nanophotonic circuits that use meshes of 
MZIs to implement dense matrix–vector multiplications (c–e) or using 
optimized structures of inhomogeneous media (f, g). In c, each blue block 
represents a (linear) matrix–vector multiplication and fNL() are nonlinear 
activation functions. The matrices in each layer, M(1), …, M(n), can be 

decomposed by a singular-value decomposition as M(i) = U(i)Σ(i)V(i). This 
photonic-circuit implementation of each linear block follows the mathematical 
formulation of the singular-value decomposition. In f, X(t) represent vowel 
input waveforms and PX(t) their corresponding outputs. In g, each epoch is a 
cycle of the training phase. ∆θ, ∆φ, phase shifts; DMMC, diagonal matrix 
multiplication core; SU(4), special unitary group (4); ∇, gradient. Figures 
adapted or reproduced with permission from ref. 51 (a; copyright IEEE),  
ref. 67 (b) and ref. 29 (c–e); reprinted with permission from AAAS from ref. 50  
(f, g; copyright the authors, some rights reserved, exclusive licensee AAAS, 
distributed under a CC BY NC 4.0 licence).

Free space
vs

Integrated optics
Sci. Rep. 8, 12324 (2018). Sci. Adv. 5, eaay6946 (2019). 



Matrix multiplication in free space optics

Basic building blocks:

Advanced functions

Adapted from Nature 588, 39 (2020) 

42 | Nature | Vol 588 | 3 December 2020

Perspective

sensor by projecting them via their depth-varying point spread func-
tions onto a 2D sensor, and spectral filters then determine how the 
colour spectrum is integrated. Typically, an electronic decoder then 
estimates certain properties from the raw sensor measurements. Using 
a differentiable image formation model, we can simulate the optical 
projection of a 3D multispectral scene on a sensor; algorithms then pro-
cess that data. Therefore, we can treat the problem of camera design in 
a holistic manner as the end-to-end optimization of optics and imaging 
processing65 (see Fig. 2). Such a ‘deep’ computational camera can be 
trained in an offline stage to optimize the performance of a high-level 
loss function, such as image classification or object detection. Similar 
to conventional computer vision approaches, such a training proce-
dure optimizes the weights of a neural network or the parameters of 
another differentiable algorithm. However, our encoder–decoder 

interpretation goes one step further in allowing the error of a high-level 
loss function to be backpropagated all the way into the physical param-
eters of the camera. Thus, a physical lens and a deep neural network 
can be jointly optimized for a specific task, as defined by a loss func-
tion and a training dataset (see Fig. 3). Once optimized, the physical 
layer (in this example, the lens) can be fabricated and used to perform 
inference tasks, such as classifying captured images more robustly, 
faster or using less power than conventional digital layers. We dub this 
end-to-end optimization of optics and image processing ‘deep optics’.

Over the last year, several deep optics approaches have been pro-
posed for various applications. For example, this strategy applies to 
optimizing the spatial layout of the sensor’s colour filter array66, the 
pixel exposures of emerging neural sensors67, structured illumina-
tion patterns for microscopy and depth sensing68–71, and the shape of 
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Fig. 2 | Overview of optical wave propagation. Wave propagation in free 
space and through different media are shown in the top rows, and the 
corresponding linear matrix operation(s) are given in the bottom rows.  
a, Propagation in free space is mathematically described by a convolution of 
the wave field with a complex-valued kernel. b, The interaction of a field with a 
thin scattering layer corresponds to multiplication with a diagonal matrix11.  
c, A field propagating through multiple thin scatterers with spacing in between 
them is a concatenation of diagonal matrices and convolution matrices14.  
d, A thick (volumetric) scatterer can implement a dense, pseudo-random 
matrix with a structure that corresponds to the physical properties of the 

scattering medium13. e, A traditional optical 4f system with a scattering layer 
implements an element-wise product in the Fourier domain, which 
corresponds to a convolution in the primal domain via the convolution 
theorem11. f, Modified 4f systems can also be used to copy the input field 
multiple times with a grating and convolve each copy with a different kernel15. 
Techniques in a–f can map a 2D input field to a 2D output field. g, A dense 
matrix–vector multiplication, mapping a one-dimensional input field to a 
one-dimensional output field, can be implemented with a 4f-type system100. 
The complex-valued matrices are colour-coded in red whenever the amplitude 
terms are most relevant and blue whenever the phase terms dominate.

2D convolutions
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a differentiable image formation model, we can simulate the optical 
projection of a 3D multispectral scene on a sensor; algorithms then pro-
cess that data. Therefore, we can treat the problem of camera design in 
a holistic manner as the end-to-end optimization of optics and imaging 
processing65 (see Fig. 2). Such a ‘deep’ computational camera can be 
trained in an offline stage to optimize the performance of a high-level 
loss function, such as image classification or object detection. Similar 
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can be jointly optimized for a specific task, as defined by a loss func-
tion and a training dataset (see Fig. 3). Once optimized, the physical 
layer (in this example, the lens) can be fabricated and used to perform 
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faster or using less power than conventional digital layers. We dub this 
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posed for various applications. For example, this strategy applies to 
optimizing the spatial layout of the sensor’s colour filter array66, the 
pixel exposures of emerging neural sensors67, structured illumina-
tion patterns for microscopy and depth sensing68–71, and the shape of 
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Fig. 2 | Overview of optical wave propagation. Wave propagation in free 
space and through different media are shown in the top rows, and the 
corresponding linear matrix operation(s) are given in the bottom rows.  
a, Propagation in free space is mathematically described by a convolution of 
the wave field with a complex-valued kernel. b, The interaction of a field with a 
thin scattering layer corresponds to multiplication with a diagonal matrix11.  
c, A field propagating through multiple thin scatterers with spacing in between 
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d, A thick (volumetric) scatterer can implement a dense, pseudo-random 
matrix with a structure that corresponds to the physical properties of the 

scattering medium13. e, A traditional optical 4f system with a scattering layer 
implements an element-wise product in the Fourier domain, which 
corresponds to a convolution in the primal domain via the convolution 
theorem11. f, Modified 4f systems can also be used to copy the input field 
multiple times with a grating and convolve each copy with a different kernel15. 
Techniques in a–f can map a 2D input field to a 2D output field. g, A dense 
matrix–vector multiplication, mapping a one-dimensional input field to a 
one-dimensional output field, can be implemented with a 4f-type system100. 
The complex-valued matrices are colour-coded in red whenever the amplitude 
terms are most relevant and blue whenever the phase terms dominate.
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sensor by projecting them via their depth-varying point spread func-
tions onto a 2D sensor, and spectral filters then determine how the 
colour spectrum is integrated. Typically, an electronic decoder then 
estimates certain properties from the raw sensor measurements. Using 
a differentiable image formation model, we can simulate the optical 
projection of a 3D multispectral scene on a sensor; algorithms then pro-
cess that data. Therefore, we can treat the problem of camera design in 
a holistic manner as the end-to-end optimization of optics and imaging 
processing65 (see Fig. 2). Such a ‘deep’ computational camera can be 
trained in an offline stage to optimize the performance of a high-level 
loss function, such as image classification or object detection. Similar 
to conventional computer vision approaches, such a training proce-
dure optimizes the weights of a neural network or the parameters of 
another differentiable algorithm. However, our encoder–decoder 

interpretation goes one step further in allowing the error of a high-level 
loss function to be backpropagated all the way into the physical param-
eters of the camera. Thus, a physical lens and a deep neural network 
can be jointly optimized for a specific task, as defined by a loss func-
tion and a training dataset (see Fig. 3). Once optimized, the physical 
layer (in this example, the lens) can be fabricated and used to perform 
inference tasks, such as classifying captured images more robustly, 
faster or using less power than conventional digital layers. We dub this 
end-to-end optimization of optics and image processing ‘deep optics’.

Over the last year, several deep optics approaches have been pro-
posed for various applications. For example, this strategy applies to 
optimizing the spatial layout of the sensor’s colour filter array66, the 
pixel exposures of emerging neural sensors67, structured illumina-
tion patterns for microscopy and depth sensing68–71, and the shape of 
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space and through different media are shown in the top rows, and the 
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d, A thick (volumetric) scatterer can implement a dense, pseudo-random 
matrix with a structure that corresponds to the physical properties of the 

scattering medium13. e, A traditional optical 4f system with a scattering layer 
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multiple times with a grating and convolve each copy with a different kernel15. 
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matrix–vector multiplication, mapping a one-dimensional input field to a 
one-dimensional output field, can be implemented with a 4f-type system100. 
The complex-valued matrices are colour-coded in red whenever the amplitude 
terms are most relevant and blue whenever the phase terms dominate.

Thin mask

42 | Nature | Vol 588 | 3 December 2020

Perspective

sensor by projecting them via their depth-varying point spread func-
tions onto a 2D sensor, and spectral filters then determine how the 
colour spectrum is integrated. Typically, an electronic decoder then 
estimates certain properties from the raw sensor measurements. Using 
a differentiable image formation model, we can simulate the optical 
projection of a 3D multispectral scene on a sensor; algorithms then pro-
cess that data. Therefore, we can treat the problem of camera design in 
a holistic manner as the end-to-end optimization of optics and imaging 
processing65 (see Fig. 2). Such a ‘deep’ computational camera can be 
trained in an offline stage to optimize the performance of a high-level 
loss function, such as image classification or object detection. Similar 
to conventional computer vision approaches, such a training proce-
dure optimizes the weights of a neural network or the parameters of 
another differentiable algorithm. However, our encoder–decoder 

interpretation goes one step further in allowing the error of a high-level 
loss function to be backpropagated all the way into the physical param-
eters of the camera. Thus, a physical lens and a deep neural network 
can be jointly optimized for a specific task, as defined by a loss func-
tion and a training dataset (see Fig. 3). Once optimized, the physical 
layer (in this example, the lens) can be fabricated and used to perform 
inference tasks, such as classifying captured images more robustly, 
faster or using less power than conventional digital layers. We dub this 
end-to-end optimization of optics and image processing ‘deep optics’.

Over the last year, several deep optics approaches have been pro-
posed for various applications. For example, this strategy applies to 
optimizing the spatial layout of the sensor’s colour filter array66, the 
pixel exposures of emerging neural sensors67, structured illumina-
tion patterns for microscopy and depth sensing68–71, and the shape of 
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scattering medium13. e, A traditional optical 4f system with a scattering layer 
implements an element-wise product in the Fourier domain, which 
corresponds to a convolution in the primal domain via the convolution 
theorem11. f, Modified 4f systems can also be used to copy the input field 
multiple times with a grating and convolve each copy with a different kernel15. 
Techniques in a–f can map a 2D input field to a 2D output field. g, A dense 
matrix–vector multiplication, mapping a one-dimensional input field to a 
one-dimensional output field, can be implemented with a 4f-type system100. 
The complex-valued matrices are colour-coded in red whenever the amplitude 
terms are most relevant and blue whenever the phase terms dominate.

layered scatterer

Good for single-layer Neural Networks

All-optical deep neural networks : 
cascaded non-linearities and propagation 

remains challenging



Optical computing with a complex medium ? 

Using disorder for computation in 
Machine Learning?

Transmission	
Matrix
!

Complex Medium

• One layer neural network

• Fixed i.i.d gaussian

• 1012 Complex coefficients

• Detection (intensity) non-

linearity

a.k.a. in signal processing : « random

projections » 

A universal operation



Dimensional Reduction
« Johnson & Lindenstrauss »

Reference : Johnson, W. B., & Lindenstrauss, J. Extensions 
of Lipschitz mappings into a Hilbert space. Contemporary
mathematics, 26,189(1984) 

• Random matrix : reduction in dimension

• conserve distances even for M<<N

Dimensional expansion: 
The “kernel Trick” « Rahimi & Recht »

• Make a non-linear regression problem linear

• Random projections are efficient and  universal

Reference : Rahimi, A., & Recht, B. (2007). Random features for 
large-scale kernel machines. In Advances in neural information 
processing systems (pp. 1177-1184).

What are « random projections » good for? 

You don’t need to 
know the matrix!

(just know that it is random) 



Unknown image recognition
<2% error

(as good as with initial images)

LINEAR 
REGRESSION

Images Database :
Handwritten numbers

Speckles
(Camera)Complex medium 

Random projections

Binary
modulator

Optical computing : image classification

Saade, A., et al. Random Projections
through multiple optical scattering:
Approximating kernels at the speed of
light. IEEE (ICASSP) (2016)

General idea:
Kernel method

Collaboration : Igor Carron, Florent Krzakala, Laurent Daudet



optical computing revisited?

Equivalent 1015  operations / s : You would
need a Peta-scale computer to do the same !

&               SUPER-FAST

kHz operation 
→103 such 

multiplies / s

EXTRA-LARGE

H of size higher 
than 

106 x 106

(TBs of memory) 

Why is it interesting ? 

• many, many use cases (inference, training, linear algebra…)

• already at scale for modern machine learning

• you can buy it already (1st commercial optical processor)

(CoI disclosure: S.G. acknowledges financial interest in LightOn)



Reservoir Computing

Recurrent Neural Networks 
are notoriously hard to train

Jaeger & Haas (2004). Science

Input Output



« Reservoir » Computing

Input Output Reservoir Computing fixes all 
internal weights randomly

Reservoir

Jaeger & Haas (2004). Science

Recurrent Neural Networks 
are notoriously hard to train

Only the output weights are trained

!("#$) = # $& ! " +$' & "

next reservoir current reservoir current input

Random matrices

Particularly well suited for physical implementations
• Dedicated electronics
• Exotic architectures
• Integrated & free space photonics

Van der Sande, Guy, Daniel Brunner, and Miguel C. Soriano.
"Advances in photonic reservoir computing." Nanophotonics 6.3 (2017): 561-576.



Electronic
feedback

Reservoir computing with a complex medium ?

Input

Reservoir state Output speckle
(quadratic non-linearity)

!("#$) = # $& ! " +$' & "

Dong, Rafayelyan, Krzakala, Gigan (2019). IEEE Journal of Selected Topics in Quantum Electronics

Last stage  / off-line

Predict output with a linear model
' " = $(! "

(done on a CPU or GPU - Typically not the bottleneck)

!("#$)! !

" !

# = . "



Typical studied chaotic systems

Double-rod pendulum

Turbulence Weather and climate Financial markets

…

chaotic systems

System becomes unpredictable after a characteristic time : the Lyapunov time 



Model equations for chaotic systems

The Mackey-Glass equation (1D):
!"
!# =

%"(
1 + "()

− )"

The Kuramoto-Sivashinsky equation (2D):
*+
*# + ∇

*+ + ∇++ + 12 ∇+ + = 0



Mackey-Glass prediction (1D)

1. Compute the reservoir states
!("#$) = 1

- # $& ! " +$' & "

2. Output with a linear model
' " = $(! "

Dong, Rafayelyan, Krzakala, Gigan (2019). IEEE Journal of Selected Topics in Quantum Electronics



Mackey-Glass prediction (1D)

Dong, Rafayelyan, Krzakala, Gigan (2019). IEEE Journal of Selected Topics in Quantum Electronics



Kuramoto-Sivashinsky prediction - results

Error

Prediction

Ground truth

Rafayelyan, Dong, Tan, Krzakala, Gigan (2020). Physical Review X 



Scaling behavior
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Reservoir size is fixed, !!"# = 10000

Spatial domain size is fixed, % = 60

Larger networks 
can predict better

larger chaotic systems

Rafayelyan, Dong, Tan, Krzakala, Gigan (2020). Physical Review X 



Energy efficiency

Speed

Dimensionality

Optical computing efficiency

Electronics Optics

Speed !(#') !(1)

Energy efficiency ~150 W ~30 W

Dimensionality Memory limit
(~ GB)

Resolution limit
(~ TB)



Computation time versus reservoir size (one iteration) 

Number of Neurons

Optical 
Advantage !

Rafayelyan, Dong, Tan, Krzakala, Gigan (2020). Physical Review X 



Other recent works on computing with disorder

Programmable linear circuits in a multimode 
fiber

MultiMode Fiber
(MMF)

Leedumrongwatthanakun, S.. et al.,
Nature Photonics 14, 139–142 (2020).

Scalable Spin-Glass Optical Simulator

Pierangeli et al. Phys. Rev. Applied 15, 034087 (2021)
Collaboration : Claudio Conti (Roma)



Take-home message

optical computing
• All-to-all connectivity
• Large scale
• Low power consumption

Challenges 
• Engineering disorder
• Non-linearities

Challenges
• Low signals
• Speed
• …

Light in complex media 
• Complex media are ubiquitous

…scattering can exploited
• Shaping can “undo” scattering
Transformative concept for many fields
(imaging, sensing, spectroscopy…)

Computational imaging

• Algorithms joins force with hardware 
• Leverages modern ML frameworks

!



Thanks to my coworkers and collaborators

Thank you for your attention !

Sylvain.gigan@lkb.ens.fr
@comedialkb

If you are interested in the field :

mailto:Sylvain.gigan@lkb.ens.fr
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