

Technical Groups

An Insight into Holographic Sensors Research: Challenges and Applications

Featuring Izabela Naydenova, Technological University Dublin 25 March 2022

Technical Group Executive Committee

Chair Ivan Divliansky University of Central Florida CREOL USA

Vice Chair Ghaith Makey Bilkent University Turkey

Event & Social Media Officer Biswajit Pathak University of Oxford UK

Webinar and Events Officer Yifan Peng Stanford University USA

About Our Technical Group

Our technical group focuses on the design and implementation of holographic and diffractive-optic devices and systems for scientific, commercial, and other applications.

Our mission is to connect the 1000+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- <u>Digital Holographic Microscopy Techniques for Applications in Cytometry and Histology</u>
- <u>Structured Light with Digital Holograms</u>
- <u>Metasurface Holograms</u>
- <u>Real-Time Hologram Rendering from Optically-Acquired Interferograms</u>

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at <u>www.optica.org/FH</u>
- On LinkedIn at <u>www.linkedin.com/groups/4826728</u>
- On Facebook at <u>www.facebook.com/groups/opticaholography</u>
- Email us at <u>TGactivities@optica.org</u>

Today's Speaker

Prof. Izabela Naydenova Technological University Dublin

Izabela Naydenova received her MSc in Applied Optics from the University of Sofia (1993) and PhD in Physics from the Bulgarian Academy of Sciences (1999). Worked as a Postdoctoral researcher at the Technical University of Munich, (1999-2002). Joined the Centre for Industrial and Engineering Optics (IEO), Dublin Institute of Technology as an Arnold F. Graves postdoctoral research fellow (2002-2005), Senior Postdoctoral Researcher (2005-2008) and took up current position as a Lecturer in the School of Physics, DIT in 2008. She was awarded the title of DIT Honorary Professor in 2017. Since 2021 she is the Scientific Director of the IEO. Current research interests are in holographic recording materials and their applications in sensing and fabrication of diffractive optical devices. Prof. Naydenova is co-author of more than 130 papers, 7 book chapters and 6 granted patents. She is co-founder of Optrace Ltd. She has supervised 12 PhD, 5 Master and 45 Bachelor students to their completion.

An Insight into Holographic Sensors Research: Challenges and Applications

Izabela Naydenova

Centre for industrial and Engineering Optics/ School of Physics and Clinical & Optometric Sciences TU Dublin

OPTICA Webinar, 25th March 2022

Centre for Industrial and **Engineering Optics - IEO School of Physics and Clinical and Optometric Sciences**

Prof. I Naydenova **Functionalised Optical Structures** (Sensing, Security, **Micro-actuators**)

Dr S. Martin Holography for Diffractive Optical Elements

Dr K. Murphy Holography for **Wavefront Sensing** & Vision

Spin-out company (2013)

Materials research Dr Mikulchyk -Sol-gels

Dr D. Cody **Calibration and** Quality Assurance of **Medical Technologies**

Interferometry and Computational Imaging Prof V. Toal

✤ 4 Full time researchers

- 2 Academic staff
- ✤ 11 PhD students
- ✤ 2 MPhil students
- ✤ 10 undergraduate students

Optrace Every hologram as unique as a fingerprint

Home Optrace Products

Market Applications
About Counterfeiting About Us
Contact Us

tickers that are placed over products packaging or label.

- Spin –out company 2013 2021
- Irish based company
- Producers of holographic security labels and equipment for their production

INDIVIDUALISED HOLOGRAMS

Outline

Holographic sensors principle of operation Design and fabrication of holographic sensors Temperature sensitive holograms Zeolite doped sensors for detection of VOCs SRG for detection of heavy metals in water Aztec grating for detection of humidity Pressure sensor

Holographic sensors: principle of operation, advantages and main challenges

Holographic sensors

Spatially varying refractive index/thickness Visual detection – three-dimensional image capability Compatible with laser manufacturing

TEICNEOLAÍOCHTA

ECHNOLOGICA INIVERSITY DUB

6

Effective Refractive index **Refractive index modulation Dimensional change** Analyte ∼ Polymer chain н Nanoparticle Δd Before exposure Diffraction efficiency,

Wavelength, nm

g

After

A. K. Yetisen, et al, Chem. Rev. 114, 10654-10696 (2014).

I. Naydenova, "Holographic sensors" in "Optical Holography", Edited by Pierre-Alexandre Blanche, Elsevier Inc, 2020, ISBN: 978-0-12-815467-0

Response to external stimuli

Advantages and Applications

Advantages

- electronic read-out , remote monitoring
- •visual indication, no power source required
- can be incorporated into packaging
- compact size and weight
- •relatively low cost, disposable
- multiplexing of different sensors is possible

Analyte	Dynamic Range	Sensitivity
Trypsin (µg ml ⁻¹)	< 20	0.04
Water activity in solvents (ppm)	< 20000	120
Alcohols (%)	< 100	0.3
K ⁺ (mM)	< 30	1
pH	2-9	0.0006
Glucose (mM)	< 375	0.09
Ionic strength (mM)	< 500	0.08
Penicillin G (mM)	< 1-25	0.05
Urea (mM)	< 50	0.15
$Ca^{2+}(\mu M)$	<70	2.2
Lactate (mM)	< 12	0.1
Calcium dipicolinate (mM)	> 50	40
Humidity (%, RH)	10-80	1
Edrophonium (µM)	< 300	0.4
Alkanes, alkenes, alkynes (% v/v)	< 100	0.5
$Co^{3+} (mmol l^{-1})$	< 10	0.01
Organic solvents (%, v/v)	< 10	0.1
Testosterone (µM)	< 10	1.0
Cu^{2+} , Fe^{2+} (1 M)	< 1.0	0.1
Ammonia (NH ₃) (%, v/v)	0.19-12.5	2
Pb ²⁺	0.1-10.0 mM	11.4 µM

Yetisen, A. K.; Volpatti, L. R.; Humar, M.; Kwok, S. J. J.; Pavlichenko, I.; Kim, K. S.; Koo, H.; Butt, H.; Naydenova, I.; Khademhosseini, A.; et al. Photonic Hydrogel Sensors. <u>Biotechnol Adv.</u> 2016 May-Jun; 34(3): 250-71.

Key challenges in holographic sensors research

Selectivity – novel approaches to functionalisation, sensor arrays

Sensitivity

novel functionalized photonic structures and materials for holographic recording – functionalized nanoparticles, chemical structure of the copolymerizing monomers, crosslinkers, opto-mechanical structures

Visibility

optical geometry, type of diffractive optical element (Aztec gratings, diffusers, lenses)

Response time

host matrix – porosity, hydrophobicity / hydrophilicity, thickness of the device

Advantage over existing technologies

flexible mass production, easy integration of the sensors with new and emerging technologies wearable/portable devices and technologies such as microfluidics, potential to be miniaturized in array formats for multiplexing

Holographic Sensors Research

Design of holographic structures Material development

Functionalisation of the structures

Integration in sensor devices

Selection of the holographic structure

TABLE 7.5

Diffraction Efficiency and Sensitivity of Holographic Sensors.

	Diffraction Efficiency	Sensitivity
Transmission	Thin $\eta = rac{I_d}{I_o} = J_m^2 \left(rac{arphi}{2} ight)$	$\frac{\partial(\eta)}{\partial(\Delta n)} = \frac{\pi d}{\lambda_p \cos \theta_B} J_1\left(\frac{\pi d}{\lambda_p \cos \theta_B} \Delta n\right) \left[J_0\left(\frac{\pi d}{\lambda_p \cos \theta_B} \Delta n\right) - J_2\left(\frac{\pi d}{\lambda_p \cos \theta_B} \Delta n\right) \right]$
$m\lambda_{\rho} = \Lambda \sin\theta_{B}$	$\varphi = \frac{2\pi\Delta nd}{\lambda_p \cos \theta_B}$	$\frac{\partial(\eta)}{\partial(\Delta d)} = \frac{\pi \Delta n}{\lambda_{\rho} \cos \theta_{B}} J_{1}\left(\frac{\pi \Delta n}{\lambda_{\rho} \cos \theta_{B}} d\right) \left[J_{0}\left(\frac{\pi \Delta n}{\lambda_{\rho} \cos \theta_{B}} d\right) - J_{2}\left(\frac{\pi \Delta n}{\lambda_{\rho} \cos \theta_{B}} d\right)\right]$
$\lambda_{p} = 2n\Lambda \sin\theta_{B}$	Thick $\eta = \sin^2\left(rac{arphi}{2} ight)$	$\frac{\partial(\eta)}{\partial(\Delta n)} = \frac{\pi d}{\lambda_{p} \cos \theta_{B}} \left[\sin \left(2 \frac{\pi \Delta n d}{\lambda_{p} \cos \theta_{B}} \right) \right]$
	$\varphi = \frac{2\pi\Delta nd}{\lambda_p \cos \theta_B}$	$\frac{\partial(\eta)}{\partial(\Delta d)} = \frac{\pi \Delta n}{\lambda_p \cos \theta_B} \left[\sin \left(2 \frac{\pi \Delta n d}{\lambda_p \cos \theta_B} \right) \right]$
Reflection $\lambda_p = 2n\Lambda \sin\theta_B$	$\eta = \tanh^2\left(rac{arphi}{2} ight)$	$\frac{\partial(\lambda_p)}{\partial(\Delta n)} = \frac{\pi d}{\tanh^{-1}(\sqrt{n})\cos\theta_B}$
	$\eta = anh^2 igg(rac{\pi \Delta n d}{\lambda_r \cos heta_{B}} igg)$	$\frac{\partial(\lambda_{p})}{\partial(d)} = \frac{\pi \Delta n}{\tanh^{-1}(\sqrt{n})\cos\theta_{B}}$

Cody et al, Vol. 35, No. 1 / January 2018 / JOSA A, https://doi.org/10.1364/JOSAA.35.000012

Holographic sensors based on transmission VHG

Figure: (a)Variation of the diffraction efficiency of volume transmission gratings with a range of grating thicknesses and probe wavelengths; (b) bird's eye view of (a).

Thickness and Spatial Frequency

Figure: (a) Variation of the diffraction efficiency of volume transmission grating with gratings thickness and Spatial Frequency. (b) bird's eye view of figure (a).

Minimum thickness requirements for volume hologram at different probe wavelength (SF 800 line/mm)

 $Q = \frac{2\pi\lambda d}{n\Lambda^2}$

Q>10

Wavelength (λ_p) (nm)	Grating thickness (d)
380	5um
532	7um
750	10um

Minimum thickness requirements for volume hologram at each probe Spatial Frequency

λp= 532nm)

Spatial frequency	Grating thickness
(1/^)	(d)
515 l/mm	17um
800 l/mm	7um
1500 l/mm	2um

Holographic sensors based on transmission VHG

Linear regime of operation

DLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

The thickness limits for **linear regime** for different wavelengths (SF=800 lines/mm)

Wavelength (λ_p)	Grating thickness (d)	Grating thickness (d)
	For the lower limit of	For an upper limit of
	the linear regime	the linear regime
	(0.22)	(0.78)
380nm	12um	26um
532nm	17um	35um
750nm	23um	50um

The thickness limits for **linear regime** for gratings of different Spatial frequency (wavelength 633nm)

Spatial	Grating thickness (d)	Grating thickness (d)	
Frequency($1/\Lambda$)	For the lower limit of the	For the upper limit of	
	linear regime (0.22)	the linear regime	
		(0.78)	
515 l/mm	17um	36um	
800 l/mm	17um	35um	
1000 l/mm	16um	35um	
1500 l/mm	16um	33um	
2000 l/mm	15 um	31um	

Holographic sensors based on surface holograms

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

Grating is considered plane when: $Q = \frac{2\pi\lambda_r d}{nA^2} < 1$

Diffraction Efficiency η of thin grating:

$$\eta = J_m^2 \left(\frac{\Delta \varphi}{2}\right) = \frac{I_d}{I_o}$$

where:
$$\Delta \varphi = \frac{2\pi \Delta n d}{\lambda_r \cos \theta_B}$$

Fabrication: transmission holograms

S – electronic shutter; HWP – half-wave plate; PBS – polarizing beam splitter; SF – spatial filter; CL – collimator; VA – variable aperture; M – mirror; PM – power meter; PL – photopolymer layer; PC – computer.

LSCOIL TEICNEOLAÍOCHTA

Transmission grating

ence bear

Under white light illumination

DULSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH DUBLIN TECHNOLOGICAL LIMMETEUTYICHE IN

Fabrication: reflection holograms

HWP – half-wave plate; S – electronic shutter; SF – spatial filter; CL – collimator; VA – variable aperture; BS – non-polarizing beam splitter; M – mirror; PL – photopolymer layer. Photopolymer layer

Under white light illumination

Materials

Materials		Toxicity of the layer	Environmental stability	High optical quality layers, thickness photosensitivity	Capable of holographic recording	Functionalised	Cost - effective	Mass- manufact ured
Photopolyn based or hydrogel	ner n Is	Non-toxic	Sensitive to Humidity and/or Temperature (>15 % RH and >30 °C)	30-250 μm	5 x 10 ⁻³	Zeolites, magnetic nanoparticles, calixarenes, crown- ethers, Poly-NIPA, Diacetone- acrylamide	Yes	Yes
Sol-gel materials	s	Non-toxic	Very stable 1000 hours in water Up to 125 °C	20-200 μm	3 x 10 ⁻³ (CW) 9 x 10 ⁻³ (2PP)	Zeolite nanoparticles	Yes	No
Cellulose based recording material	e- g s	Non-toxic	Stable 60 min in water	50-100 μm	2.5 x 10 ⁻³	4-tert- butylcalix[4]arene (TBC) ionophores	Yes	No

Functionalisation of holographic sensors by incorporation of various monomers

Capability of recording holograms of the functionalised material has to be retained! Main mechanism- swelling /shrinking of the layer containing the hologram.

Temperature sensor based on volume gratings

CH

CH₃ CH₃

Temperature sensitive photopolymer

Reversible changes in microstructure. • Low toxicity.

Photopolymer component / Functionality	Target
Polyvinyl alcohol /polymer binder	Solid layer
<i>N</i> -isopropyl acrylamide / monomer	create sensitivity to temperature
<i>N, N'-</i> methylene bisacrylamide / cross-linker	Stability of the recorded structure
<i>N</i> -phenylglycine / electron donor	improved scratch resistance of the layer decreased sensitivity to humidity
Glycerol / plasticizer	improved stability of the phonic structure, improved exposure sensitivity
Citric acid / chain transfer agent	further improvement of the spatial resolution (reflection mode)
Erythrosin B or Methylene Blue /sensitizer	Sensitivity to a specific wavelenghth

<u>Ho</u>	lographic red	cording	
<u>cha</u>	<u>aracteristics</u>	 Spatial resolution Diffraction Transmission Reflection – Refractive 	olution up to 5600 efficiency: - 80 %; 20 %; index modulation:
	Transmission	Reflection	Transmission – 4.5×10^{-3} . Reflection – 1.7×10^{-3} .

Mikulchyk T, Martin S, Naydenova I. 2017. Applied Optics 56.

10-3;

Temperature indicator

volume reflection slanted gratings recorded in NIPA-based photopolymer

1) Reflection grating (2700 lines/mm)

60 μ m thickness

Denisyuk hologram (5600 lines/mm) temperature indicator

Indicator of goods being exposed to above room temperature

Irfan et al, Adv. Photonics Res. 2021, 2, 2100062, DOI: 10.1002/adpr.202100062

Holographic temperature sensor

Target application : wound healing monitoring, mapping skin temperature: ranging from 31 to 38°C

Transmission gratings recorded in three different hydrogel materials

Transmission gratings

T. Mikulchyk et al. / Sensors and Actuators B 239 (2017) 776–785; http://dx.doi.org/10.1016/j.snb.2016.08.052

Functionalisation by incorporation of nanosize zeolites

- Versatility pore structure, surface area, particle size and morphology, hydrophobicity / hydrophilicity
- Low scatter –good optical quality nanocomposite films
- Stable suspensions, suitable pH, large variety of refractive indices

Functions of zeolite nanoparticles in photopolymers

- Alteration of the effective refractive index/refractive index modulation
- Modification of the mechanical properties of the photopolymer and its ability to shrink /swell
 40 μm
- Sensing properties

Methods for incorporation of the zeolite nanoparticles to photopolymer layers

Mixed in photopolymer

Typical resolution ~300 nm

Spin-coating Typical resolution ~1-5 µm

Thin layer ~ 200 nm, lower sensitivity

Faster response time

Flexible functionalisation

Ink-jet printing

Controlled amounts of zeolites

Patterning by localised

deposition of the nanoparticles

More than one zeolite on one sensor

Before recording homogeneously distributed throughout the layer

Patterning by holographic recording and polymerisation driven diffusion of photopolymer components

Zeolite doped transmission holograms

Industrial & Engineering Optics

Spatial redistribution of zeolite nanoparticles during holographic recording

empty zeolite nanoparticle

In presence of analyte

Nø analyte

0

30

Spatial variation of the refractive index of the layer

Distance, m High diffraction efficiency

Distance, m Low diffraction efficiency

• zeolite nanoparticle with adsorbed analyte

 $\frac{2f_{nanodopants}}{(n_{nanodopant} - n_{host})}\sin(\alpha\pi)$ Δn_{nano} π

Zeolite nanoparticles

Size ~30 nm Pore openings 5.5 Å **3D structure** $H_2O=4\%$

Characteristics

Size ~30 nm Pore opening 7.1 Å **1D structure** $H_2O= 16 \%$

Controlled gas environment

- **GC** Gas storing chamber
- SM Spectrometer
- LS Light Source
- TC Testing Chamber
- **VP** Vacuum pump
- HG Holographic grating.

Figure : Photograph of gas exposure and characterization setup; (a), and gas testing chamber (b)

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH **Exposure to toluene of slanted holographic gratings** (Graceson Anthony, PhD student) UNIVERSITY DUBLIN

Time (minutes)

TECHNOLOGICAL

Figure: Sensor response of diffraction efficiency of undoped sample (a), and doped sample diffraction (b). Change in efficiency at each stage of evacuation and toluene exposure for undoped and doped samples (c). Peak wavelength shift and intensity variation in the diffracted beam (d), peak wavelength shift at each stage of evacuation and toluene exposure (e).Time constant at each stage of evacuation and exposure(f),

Theoretical analysis of sensor response

Figure: Assumptions and the steps utilised in analysing the response of sensors recorded in a) doped and b) undoped layers.

The contribution of Δn_1 , Δd , $\Delta \Psi$, $\Delta \theta_{probe}$ for the observed change in diffraction efficiency

Figure: 1st evacuation and 1st exposure cycle of doped (a,d) and undoped (b,e) with $\Delta navg \neq 0$. 1st evacuation and 1st exposure cycle of undoped at $\Delta n_{avg} \neq 0$ (b, e), and at $\Delta n_{avg} = 0$ (c,f).

Figure: Estimated values of Δn_1 (a) and Bragg angle detuning (b) at different gas testing cycle of doped samples.

Undoped layers

Figure: values of Δd (a), Δn_1 (b) and ($\Delta \theta$ - $\Delta \Psi$) (c) at different gas testing cycle of undoped samples at $\Delta n_{avq} \neq 0$ and $\Delta n_{avq} = 0$

Response dependent on test molecule size

Exposure to methanol resulted in greater change in diffraction efficiency for both doped and undoped samples compared to toluene

Sensor based on SHG (Dr Sabad e Gul)

Sabad-e-Gul, D.Cody, A.Kharchenko, S.Martin, S.Mintova, J.Cassidy, I.Naydenova, Microporous and Mesoporous Materials, 2018

Sabad-E Gul et al, Sensors 2019, 19 (5), 1026; doi:10.3390/s19051026.

Characterization of the LTL zeolites nanoparticles (Dr. Anastasia Kharchenko)

a) XRD patterns of LTL- powder (b) DLS studies (c) SEM studies

Surface structures (SRG)

Surface profile characterization by AFM and WLI

□ Surface modulation - 350nm- 400nm

 \Box Period of the structures – 3µm

WLI study

Surface photonic structures coated with LTL- zeolites nanoparticles dispersed in a sol gel (TEOS) binder

a) b) 250 nm Surface Relief Grating(SRG) 5 2 4 6 8 10 12 14 c) SRG spin coated with LTL-Zeolite Nanoparticles 14.4 µm 10.8 7.2 7.2 10.8 29.0 3.6 14.4 µm Surface modulation 400nm e) SRG after 14.4 µ 20nm **Copper exposure** 7.2 7.2 30nm 29.0 10.8 3.6 14.4 um

LTL 2.7 wt %

Experimental procedure

45

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

> TECHNOLOGICAL UNIVERSITY DUBLIN

Experimental Results: Exposure to Cu²⁺ ions

Experimental data/Theoretical model

Sensitivity studies Cu²⁺, Ca²⁺, Pb²⁺

LOD Cu²⁺ 1.15 mM Ca²⁺ 0.82 mM Pb²⁺ 0.73 mM

Results: Exposure to Na⁺, K⁺ ions

Metal ion detection: selectivity study

E0

D.Cody et al. Applied Optics, 2018, https://doi.org/10.1364/AO.57.00E173

Temperature studies (Exposure to Cu²⁺)

Sensor based on Aztec gratings

Humidity sensor (Collaboration with Dr Ali K. Yetisen)

Sensors based on Aztec grating

United States Patent	[19] [11]	Patent Number:	4,874,213
Cowan	[45]	Date of Patent:	Oct. 17, 1989

- [54] METHOD OF FORMING VOLUME PHASE REFLECTION HOLOGRAMS
- [75] Inventor: James J. Cowan, Lexington, Mass.
- [73] Assignee: Polaroid Corporation, Cambridge, Mass.
- [21] Appl. No.: 204,379

DLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

FECHNOLOGICAL

53

[22] Filed: Jun. 9, 1988

by A. R. Neureuther, P. K. Jain & W. G. Oldham, SPIE, vol. 275, Semiconductor Microlithography VI, 1981, pp. 110-115.

"Reduction of Photoresist Standing-Wave Effects by Post-Exposure Bake", by E. D. Walker, IEEE Trans. Elec. Dev., vol. ED-22, No. 7, Jul. 1975, pp. 464-466. "Projection Printed Photolithographic Images in Positive Photoresists", by M. A. Narasimham, IEEE Trans. Elec. Dev., vol. ED-22, No. 7, Jul. 1975, pp. 478-482.

h

Diffraction from Aztec grating

Sensors based on coated Aztec gratings (Dr Tatsiana Mikulchyk)

55

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

> TECHNOLOGICAL UNIVERSITY DUBLIN

Holographic humidity sensors

where innovation means business

A visual holographic indicator of relative humidity

Figure 1. Change of the image colour when a hologram is exposed to different humidity levels.

Before After 30s 60s 90s 180s 270s breathing

Figure 2. Colour appearance of a reflection hologram before and after breathing on it

- Naydenova I., Jallapuram R., Toal V., Martin S, Applied Physics Letters, **92**, 031109, 2008.
- Naydenova I. Jallapuram R., Toal V., Martin S, Sensors and Actuators B: Chemical, **139**, 35, 2009.

wavelength

Holographic Pressure Sensor

Pressure Sensor Applications:

 Security and Anti-Counterfeit
 Medical

Pressure Sensor Material Requirements:

1. Elastic

- 2. Low toxicity
- 3. Readily records bright reflection holograms

Pressure Sensitive Photopolymer (Dr. Dervil Cody)

Acrylamide (AA) → Diacetone Acrylamide (DA)

1. Increased Elasticity

Photopolymer component	Chemical reagent	
Polymer binder	Polyvinyl Alcohol	
Monomer	Diacetone Acrylamide	
Cross-linker	N, N'-methylene bisacrylamide	
Dye	Erythrosin B	
Electron donor	Triethanolamine	
Plasticizer/Free	Glycerol	
radical scavanger		
Chain Transfer Agent	Citric Acid	

D. Cody, S. Gribbin, E. Mihaylova, I. Naydenova., ACS Applied Materials and Interfaces, 2016.

3. Improved Hologram Brightness

Pressure Response (Dr. Tatsiana Mikulchyk)

Compression with a flat press of 1.25 cm diameter

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

Holographic recording composition, - US Patent 9,927,770, 2018

Pressure, MPa

Applied Optics, Vol. 57, No. 22, E173, https://doi. org/10.136 4/AO.57.0 0E173

Calibration of Ultrasound Systems https://youtu.be/m2n4wObjV0E

Conclusions

- Functionalised photopolymer holograms are highly versatile sensor platform
- Both colourimetric and electronic read-out are possible. Preliminary theoretical design and selection of the mode of operation are needed. Sensitivity to temperature and humidity must be taken into account.
- Slanted holographic gratings can provide enhanced sensitivity, especially when the layer can swell/shrink.
- Proof of concept sensors/indicators:
 - Temperature
 - VOCs
 - Heavy metals in water
 - Humidity
 - Pressure

Future work

Sensors and actuators

- Integrate sensors in microfluidic devices
- Asymmetric surface photonic structures
- Polarisation holograms

Materials development

Optimisation of the polymer matrices - cellulose and solgel (porosity, concentration of functionalising material) Novel functionalising materials

Acknowledgements

Centre for Industrial and Engineering Optics, TU Dublin	LCS, University of Caen	Bulgarian Academy of Sciences, IOMT	Imperial College London	TU Dublin collaborators
Prof. V. Toal Dr. Suzanne Martin Dr. Dervil Cody Dr. Tatsiana Mikulchyk Dr Kevin Murphy Mohammad Irfan Graceson Anthony Pamela Stoeva Faolan Radford McGovern Owen Kearney Dr Aritra Ghosh Dr. Sabad-e-Gul Dr. Monika Zawadzka	Prof. Svetlana Mintova Dr. J. Grand Dr. H. Awalla V. Georgieva A. Kharchenko	Prof. T. Babeva Prof. D. Nazarova Prof. S. Sainov	Dr. Ali K. Yetisen	Prof. John Cassidy (School of Chemistral and Pharmaceutical Sciences) Dr. Dana Mackey (School of Mathematical Sciences)

Ireland's EU Structural Funds Programmes 2007 - 2013 Co-funded by the Irish Government and the European Union

