All in a Spin: Rotating Trapped Microspheres

Featuring Kishan Dholakia University of Adelaide, University of St. Andrews

optica.org/technicalgroups

- Submit a question by clicking on "Q\&A"

A Quick Zoom Tutorial

- Like a question that's been submitted?
Click the "thumbs up" icon to vote for it.
- Share your feedback in the survey.

optica.org/technicalgroups

All in a spin: Rotating, Trapped Microparticles: Optical Trapping and Manipulation in Molecular and Cellular Biology (BT) Webinar

Kishan Dholakia

Centre of Light for Life, University of Adelaide, Australia and School of Physics and Astronomy University of St Andrews, Scotland
@OpticManip
http://opticalmanipulationgroup.wp.st-andrews.ac.uk

Secured over $\mathbf{A} \$ 8$ M in funding since 2021
$500 \mathrm{~m}^{2}$ lab and office space for 20 people

Home	About	ARC Grants	ERA
Enge			

TOPICS
IMAGING AT DEPTH MANIPULATION AND LEVITATED OPTOMECHANICS QUANTUM INSPIRED BIOPHOTONICS HEALTH: IVF IMPROVEMENT, EARLY DIAGNOSIS

Group of 18 (Jan 2023).
Several PDRA and PhD positions (incl joint with St Andrews) - please get in touch!

Rotation in optical traps

The Tail of a Comet

http://
sohowww.nascom.nasa.g ov/hotshots/

Peter Arpian « Astronomicum Caesareum » (1577)

Kepler (1619): 'The direct rays of the Sun strike upon it [the comet], penetrate its substance, draw away with them a portion of this matter, and issue thence to form the track of light we call the tail . . . In this manner the comet is consumed by breathing out is own tail.'

The search for the correct form: On the title page of Cometographia by Johannes Hevelius, Aristotle (left), Johannes Kepler (right) and the author discuss the trajectories of comets [Credit: (c) Max Planck Society]

Is 1873 Maxwell,' on the basis of the electromagaetic theory, showed that if light were as electromagretic phenomeaton, pressure should resalt from the abwosptica or reflection of a beam of light. After a discussion of the equations innolved, be says; "Hence in a medizm in which waves are propagated there is a pectaure in the direction mormal to the waves and numerically oqual to the energy in unit volume." Maxwell compreted the pressure exerted by the Sun on the illuminated surface of the Farth, and added:

If is probable that a mood groster esergy of madlatiot avight be obtained by meses of the coscenocret rays faen an whectic lawp. Such says falling on a thin metalic dak, delicibely ampended in a vacaum, might pertapa preduot as observable osthunionl effect.

James Clerk Maxwell celebrated at final resting place in Parton

(C) 10 March 2020
f \boldsymbol{v} -
$<$ Share

THE PRESSURE DUE TO RADIATION. ${ }^{\text {r }}$ By E. F. Nlchols and G. F. Hull.

ASTROPHYSICAL JOURNAL

$$
\begin{aligned}
& \text { THE NOBEL PRIZE } \\
& \text { IN PHYSICS } 2018
\end{aligned}
$$

A Arthur Aukin, Gerand Mounnu and Oonna Stricldand, 2 glil's Nobel Uurvaten in phyics Poocsgraph- Nobel Asipmbly

Optical Tweezers

SINGLE BEAM GRADIENT TRAP: Ashkin et al, Opt Lett 11, 288 (1986)
Co-recipient of the Nobel Prize 2018

Microscale to the Nanoscale

Care must be taken with heating! (trap light used from 700nm-1100nm) Particle polarisability is key, as are field gradients

$$
F_{\mathrm{grad}} \propto \alpha . \nabla I(r)
$$

Reason why we go to plasmonics, nanoapertures, waveguides etc

Optical tweezers:

the World's most elegant example of a Hookean spring?

Histogram of Particle motion in time

Optical tweezers has revolutionised single molecule motion: e.g. kinesin steps on microtubules ... 8 nm ..

How do we cause particles to rotate in optical traps?

Two main methods:
Asymmetric
Rotating light patterns that cause objects to align (e.g. form birefringence)

Transfer of optical angular momentum:
 spin and orbital

All-optical control of microfluidic components using form birefringence

STEVEN L. NEALE*, MICHAEL P. MACDONALD, KISHAN DHOLAKIA AND THOMAS F. KRAUSS School of Physics and Astronomys St Andrews University. St Andrews, Rite, KY16 sss, UK
"e-mal sheost-andacuk

Nature Materials 4, 530-533 (2005)

Figure 4: Rotation results.

ε_{023}^{028} AfAAADAAAAAAA

a, Maximum rotation rates with increasing power for both linearly and circularly polarized
light. b, Light transmitted through the microgear that has been analysed by passing it through a polarizer. The amplitude of the power variation indicates the magnitude of the birefringence, and the rotation rate can be gained from the period. The error bars represent the deviation from the mean rotation rate when averaging over 12 revolutions of the microgear.

Figure 1: Form birefringent microgears.

a, Diagram of a form birefringent microgear. A is the pitch of the photonic lattice, B is the rib width and the fill factor is B/A. \mathbf{b}, SEM micrograph of an actual microgear before release from the substrate.

Creating multiple traps: time sharing

Acousto-Optic Deflectors (AODs) can be scanned at hundreds of kHz

(video in collaboration with I Poberaj group).

A microfluidic pump made from glass beads the size of a heart valve. (DM Marr et al. Science 2002)

Table 1. A quantitative description of parameters for time-shared devices.

Device	Switching rate (kHz)	Power efficiency (\%)	Angular range of deflection (mrad)	Resolution ($\mu \mathrm{rad})$	Reference
Galvo-mirror	1	$-^{\mathrm{a}}$	500	10	$[9,62]$
Piezo-mirror	1	$-^{\mathrm{a}}$	50	0.1	$[63]$
AOD	$10-50$	50	30	$<1 \mathrm{~nm}^{\mathrm{b}}$	$[64]$
EOD	>100	80	1	$<1 \mathrm{~nm}^{\mathrm{b}}$	$[69]$

Light is a transverse electromagnetic wave

The E-field can oscillate up and down (linear polarization) or rotate (circular polarization spin angular momentum)

Structured light can possess angular momentum: rotation

$$
j=\varepsilon_{o}[r \times\langle E \times B\rangle] \quad \text { Allen et al Phys Rev } A \text { (1992) }
$$

Spin: due to polarisation state (rotating E-field)

土ћ per photon

$$
\begin{aligned}
& |L\rangle \\
& \mathbf{S}=\epsilon_{0} \int(\mathbf{E} \times \mathbf{A}) d^{3} \mathbf{r} \\
& \Rightarrow \mathbf{S}=\frac{\epsilon_{0}}{2 i \omega} \int\left(\mathbf{E}^{*} \times \mathbf{E}\right) d^{3} \mathbf{r} .
\end{aligned}
$$

Orbital: due to inclined wavefronts
lћ per photon

Laguerre:Gaussian (LG) beam

LG modes

Transfer of angular momentum to trapped particles

SPIN

ORBITAL

Structured light can possess angular momentum: rotation

Demonstration of spin angular momentum:

R. Beth, 1936, Princeton

Fig. 1. Beth's experiment from 1936 (Ref. 2) was based on meanaring the woeque as circularly polarized light passed through a suypended quarter-wave plate.

Experimental proof of that theoretical prediction was done by R. Beth in 1936 in Princeton. As Beth announces in his paper (R. A. Beth, Mechanical Detection and Measurement of the Angular Momentum of Light, Physical Review, v. 50, July 15, 1936) he had several discussions about the experiment with Einstein.

In this experiment Beth showed that when linearly polarized light is converted to circularly polarized one by doubly refracting slab, the slab experiences a reaction torque.

Rotation using birefringence

Right handed circularly polarised light

$2 \hbar \begin{aligned} & \text { Per photon } \\ & \text { transferred }\end{aligned}$

$$
\phi=\frac{2 \pi}{\lambda}\left(n_{e}-n_{o}\right) d
$$

$$
\tau_{\mathrm{drag}}=8 \pi \eta \Omega R^{3}
$$

$$
\eta_{\text {local }}=\frac{\Delta \sigma P}{8 \pi R^{3} \Omega \omega}
$$

Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection

Christopher Deufel ${ }^{1}$, Scott Forth ${ }^{1}$, Chad R Simmons ${ }^{1,2}$, Siavash Dejgosha ${ }^{1}$ \& Michelle D Wang ${ }^{1}$

Figure $2 \mid$ Nanofabrication of quarzz cytindes. (a) Schematic outtine of the nandatricition protocol
(b-e) Scanning electron micographs of nanotabricated cytinders. Nanofabricated cylisdical posts on the wafer (b,c). The cylinders were $1.1 \mu \mathrm{~m}$ high and $0.53 \mu \mathrm{~m}$ in dianeter. Quartz substate atter a portion of the posts was removed from the wafer (d). The quartz posts fractured eventy at their bases in a consistent nannet A single quartz oflinder after mechanical removal (e). Scale bars, 5 um in b and $1 \mu \mathrm{~m}$ in $\mathrm{c}-\mathrm{e}$

Methods and Protocols

NATURE METHODS \| VOL. 4 NO. 3 | MARCH 2007

As twist was introduced to a DNA molecule, torque increased

1. Le TT, et al., . Cell 179(3):619-631.e615 (2019) essentially linearly until the DNA buckled to form a plectoneme, after which the torque plateaued. Vertical dashed lines: buckling transitions

$$
\text { A } \quad \text { Extension (nm) }
$$

Fig. 14 Measured torque and extension of DNA molecules with different lengths. Extension (a) and torque (b) measurements for naked DNA molecules of 12.7 kbp (red) and 6.1 kbp (black) in length are shown. The

Birefringent spheres: synthesis of vaterite and nanovaterite

A key issue is avoidance of rapid recrystallisation into the calcite phase, which can occur due to the enhanced solubility of the particles as the particle size decreases.

To avoid this, ethylene glycol was added to the water used as the solvent for this reaction.

The nucleation and growth rate of the vaterite spheres is determined by the supersaturation level of the dissolved amorphous CaCO3.

4.4um vaterite (see later)

Fig. 2. SEM image of nanovaterite particles produced via the co-precipitation method in 83% ethylene glycol solvent. Mean particle size was found to be 846 nm .

Optical forces and torques can direct the growth of neurons

A photon-driven micromotor can direct nerve fibre growth

Tao Wu, Timo A. Nieminen, Samarendra Mohanty, Jill Miotke, Ronald L. Meyer, Halina Rubinsztein-Dunlop \& Michael W. Berns

Nature Photonics 6, 62-67 (2012) | doi:10.1038/nphoton.2011.287
Figure 1: Time-lapse images when a vaterite particle ${ }^{1{ }^{4}}$ is rotated anticiockwise and positioned to the left of the axon defined by the growth direction of the axon (dashed arrow 1).

a, Before the trapped vatorte particle was moved near the axon.
b. The vaberibe particle was moved to the left of the axon and cotated anticlockwise at -1 Hz .0, Aher 340 s , the axoral growth cone had alrasdy tumed to a new direction...

Carnegie, D. J., Stevenson, D. J., Mazilu, M., Gunn-Moore, F. \& Dholakia, K. Guided neuronal growth using optical line traps. Opt. Express 16, 10507-10517 (2008).

original paper:

Ehrlicher, A. et al. Guiding neuronal growth with light. Proc. Natl Acad. Sci. USA 99, 16024-16028 (2002).

Optical trapping and rotation of nanovaterite particles

Nanovaterite trapped by a 532 nm circularly polarised beam in $\mathrm{D}_{2} \mathrm{O}$.
\rightarrow No heating to the medium $<0.1^{\circ} \mathrm{CW}^{-1}$

See also Schmidt group work, e.g. $8 \mathrm{mK} / \mathrm{mW}$ (1064nm) - dominated by fluid Biophysical Journal 84, 1308 (2002) using normal water

Previous vaterite study: Parkin, S. J. et al., Phys. Rev. E 2007, 76, 041507: For vaterite crystals, a temperature increase of $66 \mathrm{CW}^{-1}$ was inferred @ 1064nm

Rings, D.; Chakraborty, D.; Kroy, K. New J. Phys. 2012, 14, 053012.

Our study isolates thermal effects in the microsphere

Determining properties of nanovaterite

A laminar Navier-Stokes model is used which can then deliver the overall drag torque or force for the rotational and translational motion of the nanoparticle.

Finite element method (implemented in COMSOL) to calculate the overall drag torque or drag force for different residual optical absorption powers.

$$
\begin{gathered}
\tau=x / v=6 \pi \mu r / \kappa \\
f_{\mathrm{c}}=\tau^{-1}=\kappa / 6 \pi \mu r \propto P .
\end{gathered}
$$

$T_{s}=\frac{Q_{\mathrm{abs}}}{4 \pi r k\left(T_{s}\right)} \quad \begin{gathered}\text { absorption coefficient of } \\ \begin{array}{c}1: 59 \times 10^{-5} \text { for } \\ \text { nanovaterite }\end{array}\end{gathered}$
i.e. for an incident beam with a power of 1 W , the nanoparticle dissipates $15.9 \mu \mathrm{~W}$, which leads to the surface temperature of 25:6 C.

Optical trapping and rotation of nanovaterite particles

Temperature dependent dynamic viscosity correction factor.
(a) Radial temperature profile and the corresponding dynamic viscosity of heavy water surrounding a nanoparticle dissipating $100 \mu \mathrm{~W}$.
(b) Viscosity correction factors for rotational (blue solid line) and translational (green solid line) motion of the nanoparticle (radius of 423 nm) as a function of its surface temperature.

$$
\begin{aligned}
\tau_{\text {drag }} & =c_{\tau}\left(T_{s}\right) 8 \pi \mu\left(T_{s}\right) r^{3} \Omega \\
F_{\text {drag }} & =c_{k}\left(T_{s}\right) 6 \pi \mu\left(T_{s}\right) r v
\end{aligned}
$$

Arita et al., ACS Nano 10, 11505 (2016)

Published: 13 September 201

Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink

Kai Wang, Ethan Schonbrun, Paul Steinvurzel \& Kenneth B. Crozier ${ }^{-}$

Nature Communications 2, Article number: 469 (2011) | Cite this article

Figure 3: Trapping and manual rotation of polystyrene nanospheres by gold nanopillars.

(a) Fluorescence images, obtained at successive times, of trapping and rotating 110 nm diameter polystyrene sphere by gold nanopillar. At time t1, sphere is close to nanopillar, but not trapped. At

Figure 1: Gold nanopillar tweezer

b20
(a) Plasmonic nano-tweezer comprising nanopillar formed on gold film. Underlying copper film and silicon substrate act as heat sink, conducting heat from nanopillar to substrate, thereby minimizing water heating. Nanopillar diameter D_{P} is 280 nm , and height H is 130 nm . (b,c) FDTD calculation of the electric field intensity distribution resulting from normal incidence plane wave illumination polarized along x-axis ($E_{\text {inc }}$) at $\lambda=974 \mathrm{~nm}$. Intensity enhancement, that is, intensity normalized to incident intensity $|E|^{2} /\left|E_{\text {INc }}\right|^{2}$, is plotted. Peak intensity enhancement is 490 times, although upper limit of colourscale is chosen to be 20 times for visualization. Scale bars, 200 nm .

Figure 4: Passive rotation of polystyrene spheres by gold nanopillar.

(a) FDTD calculation of electrical field intensity enhancement $\left[\left.E\right|^{2} / /\left.E_{\text {INC }}\right|^{2}\right.$ distribution resulting from circularly polarized illumination at $\lambda=974 \mathrm{~nm}$. (b) FDTD calculation of y-component of Poynting

OPTICA

Rotational optical tweezers for active

 microrheometry within living cellsMark L. Watson, ${ }^{1}$ © Darren L. Brown, ${ }^{2}$ Alexander B. Stilgoe, ${ }^{1}$ © Jennifer L. Stow, ${ }^{2}$ and Halina Rubinsztein-Dunlop ${ }^{1,3, *}$

$$
(\mathrm{D} 1-\mathrm{D} 2) /(\mathrm{D} 1+\mathrm{D} 2)
$$

Advantage over translational motion: microrheology centred on one particle. Potential reduction of boundary effects

Structured light can possess angular momentum: rotation

Spin: due to polarisation Orbital: due to inclined state (rotating E-field)

$$
\begin{aligned}
& \pm \hbar \text { per photon } \\
& \mathbf{S}=\epsilon_{0} \int(\mathbf{E} \times \mathbf{A}) d^{3} \mathbf{r} \\
& \quad \mathbf{S}=\frac{\epsilon_{0}}{2 i \omega} \int\left(\mathbf{E}^{*} \times \mathbf{E}\right) d^{3} \mathbf{r} .
\end{aligned}
$$

$$
\mathbf{S}=\sum_{\mathbf{l}} \hbar \mathbf{u}_{\mathbf{k}}\left(\hat{a}_{\mathbf{k}, L}^{\dagger} \hat{a}_{\mathbf{k}, L}-\hat{a}_{\mathbf{k}, R}^{\dagger} \hat{a}_{\mathbf{k}, R}\right)
$$

$$
\mathbf{S}_{z}= \pm \hbar .
$$

Laguerre-Gaussian modes

L. Allen et al., Physical Review A 45, 8185 (1992)

Hermite-Gaussian modes

- radial mode index p (determines radial structure)
- azimuthal mode index I (determines helicity)

lh per photon

$p=0, l=0$

$p=0, l=1$

$p=0, l=3$

$p=1, l=1$

Laguerre-Gaussian modes have orbital angular momentum - due to inclined wavefronts

Laguerre-Gaussian (LG) beams
Allen et al., Phys Rev A 1992

Light for rotation: orbital angular momentum transfer

Orbital angular momentum (OAM) transfer by inclined wavefronts via light scattering

$\ell \hbar$ per photon

Silica
(3 $\mu \mathrm{m}$)

Orbital angular momentum transfer to trapped particles

Garces-Chavez et al., Physical Review Letters (2003) O'Neil et al., Physical Review Letters (2002)

Chen et al. Optics Letters (2013)

New concepts to look at spin-orbit coupling negative torque

This video from Kosta Ladavac and David Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12, 1144-1149 (2004)
see also related work by other groups, including:
Ristch-Marte group, Innsbruck, Austria
Padgett Group, University of Glasgow, UK
Rubensztein-Dunlop group,Brisbane (did first work on rotation - based on absorption of CuO particles (He et al PRL, 1995)

Rotation in optical traps in vacuum

Trap in vacuum? Why?

$F \propto \frac{1}{\sqrt{ } Q}$

$$
\langle n\rangle=k_{B} T_{\mathrm{cm}} /\left(\hbar \Omega_{0}\right)
$$

Optical levitation of a trapped sphere offers:

high vibrational frequencies, record rotational speeds, and mechanical Q factors exceeding 1012 suggested.
Geraci group: zeptonewton force sensing. St Andrews has shown Q ~108 (Science Advances,(2020))

Optomechanics with levitated particles

Cooling of a levitated nanoparticle to the motional quantum ground state

Uroš Delicich ${ }^{1,2^{*}}$, Manuel Reisenbauer ${ }^{1}$, Kahan Dare ${ }^{1,2}$, David Grass ${ }^{1,{ }^{1}}$, Vladan Vuletic ${ }^{3}$, Nikolai Kiesel ${ }^{1}$, Markus Aspelmeyer ${ }^{1,2^{*}}$

+ See all authors and affiliations
Science 21 Feb 2020:
Vol. 367, Issue 6480, pp. 892-895
DOI: $10.1126 /$ science. aba3993

NewScientist

This tiny glass bead has been quantum chilled to near absolute zero

Rotational levitated optomechanics: all in a spin

Figure adapted from: Pendry J B, Quantum friction- fact or fiction?, New J. Phys.,(2010)

Experiment: trap and rotate in air or vacuum

Rotation versus pressure for the microgryoscope

Common influenza viruses, with a size of $\sim 100 \mathrm{~nm}$, can be stored for several weeks in vacuum down to 10-4 torr.

Due to their structure (e.g. lipid bilayer, nucleocapsid protein and DNA), viruses present a transparency window at the optical wavelength which yields relatively low bulk temperatures

Figure 3. Quantum superposition of living organisms. Illustration of the protocol to create quantum superposition states applied to living organisms, such as viruses, trapped in a high-finesse optical cavity by optical tweezers.

Toward quantum superposition of living organisms

To cite this article: Oriol Romero-Isart et al 2010 New J. Phys. 12033015
"When I described catching living things with light people said: 'Don't exaggerate Ashkin'."

OE Magazine, SPIE 2013
THE NOBEL PRIZE IN PHYSICS 2018

Acknowledgements

Yoshi Arita Mingzhou Chen
Steven Neale
Veneranda Garces-Chavez

Theory collaborators
Ewan Wright
Pavel Zemanek
Stephen Simpson

University of St Andrews

FOUNDED
1413

Early work on rotation with Michael Mazilu

ADVANCES IN PHYSICS: X
2020, VOL. 6, NO. 1, 10.1080/23746149.2020.1838322
https://doi.org/10.1080/23746149.2020.1838322
REVIEW
〕 OPEN ACCESS (i) Creck tor undatas

Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles

Graham D. Bruce © ${ }^{3 *}$, Paloma Rodríguez-Sevilla © ${ }^{\text {a* }}$ and Kishan Dholakia (1) ${ }^{\text {a,b }}$

