Optica

Co-packaged SiPh based optical transceivers for high-speed data-center interconnects

Jahnavi Sharma Intel PHY Research Lab 25th October 2022

Acknowledgment

Material presented from research published by

- Intel PHY Research Lab
- Intel Silicon Photonics Product Division (SPPD)
- Intel Assembly and Test Technology Development (ATTD)

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single- λ links
- Wavelength-division multiplexing
- Future directions and conclusion

Introduction: Limits of Electrical I/O

- Bandwidth limitation: Frequency-dependent channel loss.
- Power limitation: I/O power can exceed package limit.
- Package limitation: Pin count and package size scaling are unsustainable.

Optical I/O Pluggable Module

HVM product

Current high-volume product is an I/O module that plugs into a rack.

Co-packaged SiPh Optical I/O

Co-packaged SiPh Optical I/O

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single- λ links
- Wavelength-division multiplexing
- Future directions and conclusion

IMDD Optical Links

High-speed links require advances in SiPh optical devices and CMOS electronics.

IMDD Optical Links

High-speed links require advances in SiPh optical devices and CMOS electronics.

Intel Labs, PHY Research Lab

Slide 11

IMDD Optical Links at Intel

High-speed links require advances in SiPh optical devices and CMOS electronics.

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single- λ links
- Wavelength-division multiplexing
- Future directions and conclusion

IMDD Optical Links

Optical Modulator: Metrics of Interest

Slide 15

	Driver swing Modulator B/	
MZM		
EAM		
MRM		

Driver swingModulator B/WMZMIEAMIMRMI

MZM: Mach-Zehnder Modulator

MZM: Signal interferes with delayed-version to create intensity modulation.

MZM: Mach-Zehnder ModulatorDriver swingModulator B/WMZMIncome Income Inc

Carrier density modulation in the doped waveguide can introduce a phase-shift.

MZM: Mach-Zehnder Modulator

	Driver swing Modulator B/V	
MZM		
EAM		
MRM		

Carrier density modulation in the doped waveguide can introduce a phase-shift.

$\overrightarrow{E_{in}}$ $\overrightarrow{Relative phase} = \theta_{MZI}$				
Forward-bias	Reverse-bias			
Carrier-injection	Carrier-depletion			
Low swing	High swing			
Low bandwidth	High bandwidth			
	Labe Opt Eve 201			

[Bell Labs, Opt. Exp. 2012]

High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators

Po Dong,^{1,*} Long Chen,¹ and Young-kai Chen²

MZM: Mach-Zehnder Modulator

	Driver swing Modulator B/	
MZM	High	High
EAM		
MRM		

Carrier density modulation in the doped waveguide can introduce a phase-shift.

Forward-bias	Reverse-bias	
Carrier-injection	Carrier-depletion	
Low swing	High swing	
Low bandwidth	High bandwidth	

J. Verbist^{1,2,*}, M. Verplaetse¹, S.A. Srivinasan^{2,4}, P. De Heyn⁴, T. De Keulenaer^{1,3}, R. Pierco^{1,3}, R. aernewyck^{1,3} A Vyncke^{1,3} P Absil⁴ C Torfs¹ X Vin¹ C Roelkens² I Van Campo

EAM: Electro-Absorption Modulator

Optical modulator: Micro-Ring modulator (MRM)

MRM: Micro-Ring Modulator

WG coupled to a ring-resonator exhibits wavelength-selective transmission.

MRM: Operation

MRM: Micro-Ring Modulator

Voltage swing applied to the MRM can intensity modulate the incident light.

MRM: Thermal Sensitivity

MRM: Micro-Ring Modulator

Local heater stabilizes the ring spectrum in the presence of thermal drift.

MRM: Compact Size

[R. Ding, Optcomm 2014]

MRMs are ultra-compact and have high electro-optic bandwidths.

MRMs at Intel: Performance Highlight

- MRM with 10 µm radius has a modulator bandwidth of 50 GHz.
- Open eye at 128 Gb/s PAM4 without equalization and 2.4V_{pp} electrical swing.

A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning Jie Sun[®], Ranjeet Kumar[®], Meer Sakib, Jeffrey B. Driscoll, Hasitha Jayatilleka[®], and Haisheng Rong

Intel Labs, PHY Research Lab

Slide 27

MRMs at Intel: Performance Highlight #2

224Gb/s PAM4 performance

- MRM with 4 μm radius has a modulator bandwidth of 60 GHz.
- Open eye at 224 Gb/s PAM4 with scope equalization and 1.8V_{pp} electrical swing.

Popular Optical Modulators: Comparison

	Driver swing	Modulator B/W	Thermal sensitivity	Area	O-band
MZM	High	High	Low	High	Yes
EAM	Low	High	Low	Low	No
MRM	Low	High (improved)	High	Very low	Yes

MRM: A low swing, high-bandwidth and compact modulator for integrated SiPh.

Popular Optical Modulators: Comparison

	Driver swing	Modulator B/W	Thermal sensitivity	Area	O-band
MZM	High	High	Low	High	Yes
EAM	Low	High	Low	Low	No
MRM	Low	High (improved)	High (temp control)	Very low	Yes

MRM: A low swing, high-bandwidth and compact modulator for integrated SiPh.

A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS

Philip Amberg, Eric Chang, Frankie Liu, Jon Lexau, Xuezhe Zheng, Guoliang Li, Ivan Shubin, John E. Cunningham, Ashok V. Krishnamoorthy and Ron Ho A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning Chen Sun, Member, IEEE, Mark Wade, Michael Georgas, Sen Lin, Luca Alloatti, Benjamin Moss, Rajesh Kumar,

Amir H. Atabaki, Fabio Pavanello, Jeffrey M. Shainline, Jason S. Orcutt, Rajeev J. Ram, Fellow, IEEE, Miloš Popović, Member, IEEE, and Vladimir Stojanović, Member, IEEE Wavelength Locking of a Si Ring Modulator Using an Integrated Drop-Port OMA Monitoring Circuit Saurabh Agarwal, Mark Ingels, Member, IEEE, Marianna Pantouvaki, Member, IEEE, Michiel Steyaert, Fellow, IEEE, Philippe Absil, and Joris Van Campenhout, Member, IEEE A 3-D-Integrated Silicon Photonic Microring-Based 112-Gb/s PAM-4 Transmitter With Nonlinear Equalization and Thermal Control

Hao Li[®], Member, IEEE, Ganesh Balamurugan, Member, IEEE, Tachwan Kim, Member, IEEE, Meer N. Sakib, Member, IEEE, Ranjeet Kumar[®], Member, IEEE, Haisheng Rong, Senior Member, IEEE James Jaussi, Member, IEEE, and Bryan Casper, Member, IEEE

[Intel, JSSC 2021]

Slide 30

[Oracle, ASSCC 2012] [Berk/U Colorado/MIT, JSSC 2016] [IMEC/KU Leuven, JSSC 2016]

IMDD Optical Links

- External: Thermally stable but additional coupling loss.
- Integrated: Can see greater thermal variation but directly coupled.

Intel's Integrated Laser: Performance

Each 1.6T PE: 16 channels @ 100 Gb/s!

Integrated O-band laser provides high power with a clean spectrum for SiPh optical I/O.

1.6Tbps Silicon Photonics Integrated Circuit for Co-Packaged Optical-IO Switch Applications

Saeed Fathololoumi, Kimchau Nguyen, Hari Mahalingam, Meer Sakib, Zhi Li, Christopher Seibert*, Mohammad Montazeri, Jian Chen, Jonathan K Doylend, Hasitha Jayatilleka, Catherine Jan, John Hecl Ranju Venables, Harel Frish*, Reece A. Defrees*, Randal S. Appleton*, Summer Hollingsworth*, Sean McCarear*. Richard Jones. Daniel Zhu, Yuliva Akulova. and Ling Liao

IMDD Optical Links

Ge-based Photodetectors

	Ge-PD	
Resp (A/W)	0.9 @ -1V saturated	
Terminated B/W (GHz)	40 @ -2V	
Dark current (nA)	100 @ -2.5	

[Intel, JLT 2021]

Ge-based PDs show high saturated responsivity, high bandwidth and low dark current at moderate reverse bias.

1.6 Tbps Silicon Photonics Integrated Circuit and 800 Gbps Photonic Engine for Switch Co-Packaging Demonstration

Saeed Fathololoum¹⁰, David Hui, Saushed Jadhav, Jian Chen, Kimchau Nguyen, M.N. Sakih Z. Li, Hari Mahalingan, Siamak Aminatzadeh, Nelson Y. Tang, Harinath Pottini, Mohammad Montazeri, Harel Frish Recee A. Defrees, Christopher Seibert, Alexander Krichevsky, Jonathan K. Doylend, John Heck, R. Venables, A. Dahal, A. Navijoda, A. Vandapetyan²⁰, Guanet Kaur²⁰, Min Cen, Vishma Kulkam²⁰, Syd S. Islam, R. L. Speriter, S. Garag, A. C. Alduino, RK Chiou, L. Kamyah, S. Gupta, B. Xie, R. S. Appleton, S. Hollingswor S. McCaraer, Y. Ahulyon, K. M. Brown, R. Lones, Daniel Zhu, ²⁰ Dramat, Ilidever and Lino Liao. Intel Labs, PHY Research Lab

*50 Ω terminated probe

Si Waveguide Photodetectors (WG PD)

- Si-only doped WG PDs demonstrate <u>sub-band gap detection</u> at high reverse bias.
- Resp and dark current increase with reverse bias: optimize bias!

50 Gb/s all-silicon waveguide photodetectors for photonics integration

Intel Labs, PHY Research Lab

Meer Sakib, Jie Sun, Ranjeet Kumar, Jeffrey Driscoll, and Haisheng Rong

Si Ring-resonator Based Photodiode (RRPD)

Meer Sakib, Peicheng Liao, Ranjeet Kumar, Duanni Huang, Guan-lin Su, Chaoxuan Ma, and Haisheng Rong

Si Ring-resonator Based Photodiode (RRPD)

B/W reduces as Resp increases

	Ge-PD	Si WG PD	Si RRPD @ 40 pm detuning
Resp (A/W)	0.9 @ -1V saturated	0.6 @ -5.8V	0.23 @ -5.8
Terminated B/W (GHz)	40 @ -2V	30 @ -5.8	30 @ -5.8
Dark current (nA)	100 @ -2.5	850 @ -5.8	100 @ -5.8

Si RRPD 50 Gb/s NRZ eye* *50 Ω terminated probe [Intel, OFC 2020]

- Resp and B/W trend oppositely with optical bias: optimize detuning!
- Resp and dark current increase with reverse bias: optimize bias!

A 112 Gb/s all-silicon micro-ring photodetector for datacom applications

Intel Labs, PHY Research Lab

Slide 41

Meer Sakib, Peicheng Liao, Ranjeet Kumar, Duanni Huang, Guan-lin Su, Chaoxuan Ma, and Haisheng Rong

IMDD Optical Links

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single-λ links
 - 3-D integrated 112 Gb/s PAM4 CMOS-based OTX with Integrated laser and Modulator
 - 100 Gb/s PAM4 CMOS-based mixed-signal ORX
- Wavelength-division multiplexing
- Future directions and conclusion

IMDD Optical Links

A high-swing driver is required for depletion mode MRM.

A high-swing driver is required for depletion mode MRM.

A high-swing driver is required for depletion mode MRM.

MRM Challenge #2: Optical Nonlinearity

MRM Challenge #2: Optical Nonlinearity

MRM Challenge #2: Optical Nonlinearity

Nonlinear equalization is required to compensate for optical nonlinearity.

Single-λ 112 Gb/s PAM4 OTX

- 112 Gbps PAM4 OTX in 28nm CMOS was 3-D integrated with
- silicon-photonic MRM and integrated laser
- on-chip MRM thermal control.

A 3-D-Integrated Silicon Photonic Microring-Based 112-Gb/s PAM-4 Transmitter With Nonlinear Equalization and Thermal Control

Hao Li[®], Member, IEEE, Ganesh Balamurugan, Member, IEEE, Tachwan Kim, Member, IEEE, Meer N. Sakib, Member, IEEE, Ranjeet Kumar[®], Member, IEEE, Haisheng Rong, Senior Member, IEEE, Jongen Longer, Member, IEEE, and Prace Courter, Member, IEEE Intel Labs, PHY Research Lab

Benefit of Enabling NL-FFE PAM4

Wavelength (nm)

EIC Pre dist./NL-FFE disabled

TDECQ metric for PAM4 : https://www.ieee802.org/3/bs

NL pre-distortion + FFE provide a 1.4 dB improvement in TDECQ at 112 Gb/s PAM4.

A 3-D-Integrated Silicon Photonic Microring-Based 112-Gb/s PAM-4 Transmitter With Nonlinear Equalization and Thermal Control

Hao Li[®], Member, IEEE, Ganesh Balamurugan, Member, IEEE, Tachwan Kim, Member, IEEE, Meer N. Sakib, Member, IEEE, Ranjeet Kumar[®], Member, IEEE, Haisheng Rong, Senior Member, IEEE, James Jaussi, Member, IEEE, and Rayar Casper, Member, IEEE Intel Labs, PHY Research Lab

100 Gb/s PAM4 Receiver: TIA

Shunt-TIA topology to overcome bandwidth limitation from input capacitance.

Intel Labs, PHY Research Lab

100 Gb/s PAM4 Receiver: CTLE

Continuous time equalization to further improve the front-end bandwidth.

Intel Labs, PHY Research Lab

100 Gb/s PAM4 Receiver: Bandwidth vs Noise

Front-end bandwidth can be traded-off to reduce integrated noise.

100 Gb/s PAM4 RX: Effect of Low Front-end B/W

Low bandwidth TIA introduces ISI and needs equalization.

DFE can help compensate low front-end bandwidth without noise enhancement.

100 Gb/s PAM4 RX: Mixed-signal Equalization

On-chip 1-tap FFE for pre-cursor and DFE for post-cursors.

100 Gb/s PAM4 RX: Mixed-signal Equalization

Direct DFE instead of speculative DFE for first post-cursor.

Intel Labs, PHY Research Lab

The first-tap post-cursor needs to be closed in one U1.

Direct Feedback DFE : Wiring Complexity

PAM4 wiring complexity for direct DFE increases three times.

Intel Labs, PHY Research Lab

Direct Feedback DFE : Wiring Complexity

PAM4 wiring complexity for direct DFE increases three times.

Direct Feedback DFE : Reduced Complexity

Direct Feedback DFE : Improved Slicer Latency

Direct Feedback DFE : Integrating Summer Load

28nm CMOS 100 Gb/s PAM4 Mixed-signal RX

CMOS ORX is bonded with a III-V photodiode with 1A/W responsivity and 35 GHz B/W.

A 100-Gb/s PAM-4 Optical Receiver With 2-Tap FFE and 2-Tap Direct-Feedback DFE in 28-nm CMOS Hao Li[®], Member, IEEE, Chan-Ming Hau, Member, IEEE, Jahnavi Sharma, Member, IEEE

Intel Labs, PHY Research Lab

Measured Performance

- First demonstration 100 Gb/s PAM4 mixed-signal CMOS RX.
- ORX has -8.3 dBm sensitivity and 3.9 pJ/bit efficiency.

High-speed Single-λ Link

- Multi-level amplitude modulation enables 100 Gb/s per- λ .
- Circuit-level solutions for 100+ Gb/s OTX and ORX in 28 nm CMOS.

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single-λ links
- Wavelength-division multiplexing
 - $4-\lambda \times 112$ Gb/s PAM4 OTX
 - Compact thermal control in WDM links
 - -~ 4- $\lambda \times$ 50 Gb/s NRZ optical link
- Future directions and conclusion

Four-lane WDM O-band Hybrid-integrated TX

Optical Modulators: WDM Application

	Driver swing	Modulator B/W	Thermal sensitivity	Area	WDM
MZM	High	High	Low	High	Separate (de)mux needed
EAM	Low	High	Low	Low	Separate (de)mux needed
MRM	Low	High (improved)	High (temp control)	Very low	Ring resonance is WDM (de)mux

Why MRMs?

- low swing, high-bandwidth and compact modulator for integrated SiPh.
- (de)multiplexing functionality for WDM without hardware overhead.

MRM WDM Challenge #1 : Crosstalk

Crosstalk analysis:

Effect of TX / RX ring QF Role of photodiode nonlinearity [Intel, JSSC: VLSI special issue]

MRM WDM Challenge #1 : Crosstalk

MRM WDM Challenge #2: Scalable Thermal Control

	Driver swing	Modulator B/W	Thermal sensitivity	Area	WDM
MZM	High	High	Low	High	Separate (de)mux needed
EAM	Low	High	Low	Low	Separate (de)mux needed
MRM	Low	High (improved)	High (temp control)	Very low	Ring resonance is WDM (de)mux

Develop scalable thermal control solution for MRM scalable to WDM applications.

A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS

Philip Amberg, Eric Chang, Frankie Liu, Jon Lexau, Xuezhe Zheng, Guoliang Li, Ivan Shubin, John E. Cunningham, Ashok V. Krishnamoorthy and Ron Ho A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning

Chen Sun, Member, IEEE, Mark Wade, Michael Georgas, Sen Lin, Luca Alloatti, Benjamin Moss, Rajesh Kumar, Amir H. Atabaki, Fabio Pavanello, Jeffrey M. Shainline, Jason S. Orcutt, Rajeev J. Ram, Fellow, IEEE, Milos Popović, Member, IEEE, and Vladimit Stojanović, Member, IEEE Wavelength Locking of a Si Ring Modulator Using an Integrated Drop-Port OMA Monitoring Circuit Saurabh Agarwal, Mark Ingels, Member, IEEE, Marianna Pantouvaki, Member, IEEE, Michiel Steyaert, Fellow, IEEE, Philippe Absil, and Joris Van Campenhout, Member, IEEE A 3-D-Integrated Silicon Photonic Microring-Based 112-Gb/s PAM-4 Transmitter With Nonlinear Equalization and Thermal Control

Hao Li[®], Member, IEEE, Ganesh Balamurugan, Member, IEEE, Tachwan Kim, Member, IEEE, Meer N. Sakib, Member, IEEE, Ranjeet Kumar[®], Member, IEEE, Haisheng Rong, Senior Member, IEEE James Jaussi, Member, IEEE, and Bryan Casper, Member, IEEE

[Oracle, ASSCC 2012] [Berk/U Colorado/MIT, JSSC 2016] [IMEC/KU Leuven, JSSC 2016] [Intel, JSSC 2021]

Outline

- SiPh platform for high-speed DCI
- IMDD optical links
- Photonic devices
- CMOS electronics for single-λ links
- Wavelength-division multiplexing
 - 4- λ \times 112 Gb/s PAM4 OTX
 - Compact thermal control in WDM links
 - -~ 4- $\lambda \times$ 50 Gb/s NRZ optical link
- Future directions and conclusion

MRM Challenge : Process Var/Thermal Drift

MRM Challenge : Process Var/Thermal Drift

Thermal control unit (TCU) adjusts ring detuning across process and temperature.

Hybrid WDM: Scalable Thermal Control

Two sensors: detect the ring's lock point and normalize any input power fluctuation.

Hybrid WDM: # Interfaces for Thermal Control

Thermal sensors (thru/drop+input port monitors) add *two* EO interfaces *per* ring.

Compact Thermal Control : MRM as Sensor

Reverse-biased MRM is a PD that can be a thermal sensor for its absorbed power.

Compact Thermal Control : MRM as Sensor

MRM photocurrent is available at the diode nodes without additional interfaces.

Intel Labs, PHY Research Lab

Compact Thermal Control : TCU Feedback Loop

*TCU is Thermal Control Unit

TCU tunes the ring heater based on MRM i_{PH} and desired insertion loss.

Compact Thermal Control : TCU Feedback Loop

Compact Thermal Control : WDM Scalability

Intel Labs, PHY Research Lab

Thermal Measurement : Temperature Ramp

Thermal control scheme is verified by a temperature ramp.

Intel Labs, PHY Research Lab

Thermal Measurement Results: TCU OFF

With the thermal controller OFF, the eye closes under a temperature ramp.

Thermal Measurement <u>Results: TCU ON</u>

TDECQ = 0.66 dB, ER = 2.6 dB

[Intel, VLSI 2021]

With the thermal controller ON, OMA is maintained with temperature ramp.

Silicon Photonic Micro-Ring Modulator-based 4 x 112 Gb/s O-band WDM Transmitter with Ring Photocurrent-based Thermal Control in 28nm CMOS

Jahnavi Sharma*, Hao Li*, Zhe Xuan, Ranjeet Kumar, Chun-Ming Hsu, Meer Sakib, Peicheng Liao, Haisheng Rong, James Jaussi, and Ganesh Balamurugan Intel Labs, PHY Research Lab

OTX-only Measurement: $4-\lambda \times 112$ Gb/s PAM4

Per-channel 112 Gbps PAM4 eye with > 330 uW OMA and < 0.65 dB TDECQ.

Silicon Photonic Micro-Ring Modulator-based 4 x 112 Gb/s O-band WDM Transmitter with Ring Photocurrent-based Thermal Control in 28nm CMOS

Jahnavi Sharma*, Hao Li*, Zhe Xuan, Ranjeet Kumar, Chun-Ming Hsu, Meer Sakib, Peicheng Liao, Haisheng Rong, James Jaussi, and Ganesh Balamurugan Intel Labs, PHY Research Lab

Outline

- SiPh platform for high-speed DCI
- Photonic devices
- CMOS electronics for single-λ links
- Wavelength-division multiplexing
 - 4- λ \times 112 Gb/s PAM4 OTX
 - Compact thermal control in WDM links
 - <u>4- λ × 50 Gb/s NRZ optical link</u>
- Future directions and conclusion

4-λ O-band WDM Optical Transceiver

 $4-\lambda$ OTRX in 28nm CMOS with integrated thermal control for TX and RX rings.

Optical Link Measurement: $4-\lambda \times 50$ Gb/s NRZ

BER better than 10e-12 for all four channels with equalization enabled.
Error-free operation for > 10 minutes with Tx+Rx thermal control enabled.

A 4×50 Gb/s All-Silicon Ring-based WDM Transceiver with CMOS IC

Hao Li, Zhe Xuan, Ranjeet Kumar, Meer Sakib, Jahnavi Sharma, Chun-Ming Hsu, Chaoxuan Ma Haisheng Rong, Ganesh Balamurugan, and James Jaussi Intel Labs, PHY Research Lab

Outline

- SiPh platform for high-speed interconnects
- Photonic devices
- CMOS electronics for single-λ links
- Wavelength-division multiplexing
- Future directions: WDM source, Polarization-Multiplexing, Packaging
- Conclusion

Duanni Huang[°], Ranjeet Kumar[°], Xinru Wu, Kimchau N. Nguyen, Guan-Lin Su, Meer Sakib, Chaoxuan Ma, John He

Scaling Data Rate: Polarization Multiplexed Links

[Intel, OFC 2021]

TE/TM: transverse electric/magnetic; MRM: micro-ring modulator; PR: polarization rotator; PBC: polarization beam combiner; PSR: polarization splitter and rotator; OC: optical coupler; PT; phase tuner. PC: polarization control

Polarization multiplexing can help double the per-fiber data rate.

A 260 Gb/s/λ PDM link with silicon photonic dualpolarization transmitter and polarization demultiplexer

Peicheng Liao, Meer Sakib, Duanni Huang, Ranjeet Kumar, <u>Xinru</u> Wu, Chaoxuan Ma, Guan-Lin Su, Haisheno Rono

Packaging for CPO

Ranju Venables, Harel Frish*, Reece A. Defrees*, Randal S. Appleton*, Summer Hollingsworth*, Sean McCaroar*, Richard Jones, Daniel Zhu, Vuliya Akuloya, and Ling Liao Intel Labs, PHY Research Lab

Packaging for CPO: Challenges

Privanka Dobrival Mambar IEEE Suresh Pothulauchi Mambar IEEE Vanessa Poque David Hi

Outline

- SiPh platform for high-speed interconnects
- Photonic devices
- CMOS electronics for single- λ links
- Wavelength-division multiplexing
- Future directions
- <u>Conclusion</u>

Co-packaged SiPh for High-speed Interconnects

Optical building blocks for IMDD

Integrated Lasers, Modulators and Detectors **Pushing IMDD data rates**

- Single- λ links with PAM4 modulation
 - CMOS OTRX to enable 100+ Gb/s per- λ
- Wavelength-Division Multiplexing
 - Scalable thermal-control solutions
 - -~ 4- $\lambda \times$ 112 Gb/s PAM4 OTX
 - $4\text{-}\lambda\times$ 50 Gb/s NRZ optical link
 - Multi-wavelength integrated laser source
- Future directions: Polarization-Multiplexing *Packaging challenges for CPO*