
erc
Advanced

Origins of color vision

Hermann von Helmholtz 1821-1894

James Clerk Maxwell 1831-1879

Thomas Young 1773-1829

Das Mädchen mit dem Perlenohrgehänge (niederländisch: Meisje met de parel) Jan Vermeer (1632-1675).

Leinwand ($60 \times 80 \mathrm{~cm}$): Ja... amazon.de

Das Mädchen mit dem Perlen... de.wikipedia.org

Jan Vermeer van Delft: Bild "... arsmundi.de • In stock

dem Perlenohrring Poste.. posterlounge.de•In stock

dem Perlenohrring mondialart.eu • In stock

Johannes vermeer . pinterest.de

Bild - Druck AUF LEINW... amazon.de

Why Color?

What is Color Good For?

It‘s All About Hue

Color \& Objects: Chromatic Edges
Color \& Objects: Color Constancy

Color helps to see things quicker and to remember them better

Why Color?

What is Color Good For?

It‘s All About Hue

Color \& Objects: Chromatic Edges
Color \& Objects: Color Constancy
WHAT'S NEXT?

Hue distributions

Color Discrimination and Adaptation

JOHN KRAUSKOPF,* KARL GEGENFURTNER*
Recelved 22 April I991; in revised form I6 January 1992

FIGURE 14. Discrimination ellipses for test vectors equally spaced in 16 directions around the white point. The adaptation point was white.

PROCEEDINGS B

Research

Superior discrimination for hue than for saturation and an explanation in terms of correlated neural noise

M. V. Danilova ${ }^{1,2}$ and J. D. Mollon ${ }^{2}$

Figure 3. Average results for five observers, plotted in the MacLeodBoynton diagram. The dashes directly show the separation of targets and distractors at threshold. D65 indicates the chromaticity of the neutral adapting field. The dotted line indicates part of the spectrum locus.

Hue histogram - 6,476 natural objects' reflectances

- Sampled from 7 databases
(Barnard, Brown, Cambridge, Fred, Krinov, Matsumoto and Morimoto)

\square Object categories

 bark, flowers, fruits, grass, human skin and hair, leaves, lichen, pelage, plants, rocks, stone, snow, soil, tree logs, vegetable, vegetation etc..

Takuma Morimoto, Arash Akbarinia, Laysa Hedjar, Shuchen Guan, Matteo Toscani, and Karl Gegenfurtner: Spontaneous Emergence of Asymmetries in Chromatic Discrimination From Deep Neural Networks Trained on Real-World Colour Images. In preparation.

Deep Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

ImageNet Classification Error (Top 5)

ResNet 50

$224 \times 224 \times 3$

ResNet 50

Training set 1,188 everyday objects $\times 10$ random rotations

- Classifier was trained on "odd-one-out" task
- 1 epoch (1,188 shapes), 30 epochs in total

Randomly assigned color

Freeze the learned weights (no training)

Linear classifier

Train for chromatic discrimination task

Natural scene statistics may shape fundamental color vision functions.

Human-like asymmetry emerges in shallower layer

Color, objects and image segmentation

Why Color?

What is Color Good For?

It‘s All About Hue

Color \& Objects: Chromatic Edges

Color \& Objects: Color Constancy

WHAT‘S NEXT?

Color in natural scenes

http://tabby.vision.mcgill.ca

Color in natural scenes

http://tabby.vision.mcgill.ca

Hansen \& Gegenfurtner, Visual Neuroscience, 2009

Human labeled edges

Image (Lum + L/M + S $)$
Achromatic (Lum)

Human marked edges

Achromatic edges

Chromatic edges

Color and luminance edges

Color information better predicts human labeled edges

Selectivity for color and orientation

Color and orientation tuning

Color and orientation tuning

Why Color?

What is Color Good For?

It‘s All About Hue

Color \& Objects: Chromatic Edges

Color \& Objects: Color Constancy

WHAT‘S NEXT?

Witzel \& Gegenfurtner, Annual Review of Vision Science, 2018

Real-world color constancy

Color constancy is high under real-world conditions, with a single uniform illuminant and a large field of view.

Virtual Reality 2022

REAL

ENGINE

VR color calibration

Rendering

 system- OpenGL via Psychtoolbox
- UNREAL engine

VR first results

Role of local context

Role of brightest object

Role of average color

Role of average color

DNN for color constancy

- 2115 3D shapes
- 330 Munsell reflectances (WCS)
- 265 daylight and forest illuminants
- Stockman \& Sharpe cone fundamentals

- Mitsuba spectral rendering
- $181.500(330 \times 550)$ cone excitation images (124×124 pixel)

Flachot, Akbarinia, Schuett, Fleming, Wichmann \& Gegenfurtner, Journal of Vision, 2022

DNN for color constancy

A DNN (DeepCC) can achieve close-toperfect color constancy using naturalistic input stimuli

Color constancy gradually increases throughout the network layers

DeepCC evolves a human-like representation of hue, chroma and lightness

Every single network node is available for further analysis and can be compared to neurophysiological data

Color vision: from pixels to objects

- Classic color vision
- Defined by 3 color coordinates
- No direct relationship to real-world objects
- Objects
- Defined by distributions in color space
- Hue is the major invariant, important for segmentation and memory
- Lightness and saturation derived from distributions
- Natural scenes
- Feasible in VR, DNNs (and neuroimaging: MEG, fMRI, 2pi)

Thanks!

