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WHY COLOR?

WHAT IS COLOR GOOD FOR?

IT‘S ALL ABOUT HUE

COLOR & OBJECTS: CHROMATIC EDGES

COLOR & OBJECTS: COLOR CONSTANCY



Gegenfurtner & Kiper, Annual Review of Neuroscience, 2003



Color helps to see things quicker 
and to remember them better

Wichmann, Sharpe & Gegenfurtner, JEP: LM&C, 2002 Gegenfurtner & Rieger, Current Biology, 2000
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WHY COLOR?

WHAT IS COLOR GOOD FOR?

IT‘S ALL ABOUT HUE

COLOR & OBJECTS: CHROMATIC EDGES

COLOR & OBJECTS: COLOR CONSTANCY

WHAT‘S NEXT?



Ennis, Schiller, Toscani & Gegenfurtner, JOSA A, 2018
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numbering of quadrants). In all but one case, the threshold for
hue is lower than the threshold for saturation measured at the
same reference chromaticity. The absolute size of the
thresholds increases with distance from the adapting chroma-
ticity (i.e. as one passes from the first to the third panel), and Q1
(the upper right quadrant) shows the weakest difference
between hue and saturation.

Figure 3 shows average results for all observers plotted
directly in our scaled MacLeod–Boynton diagram after
the manner of W. D. Wright’s dashes [28]: the lengths of the
line segments represent the separation of the discriminanda
needed to sustain a performance of 79.4% correct. The pattern
of results, in general, reflects that seen for an individual
observer in figure 2: saturation thresholds at a given reference
chromaticity are usually larger than for hue; the difference
is least marked in Q1; and the absolute sizes of all thresholds
increase with distance of the reference chromaticity from

the white point. The latter is a classical finding (e.g. [19,20,
29–33]). A repeated-measures ANOVA with factors hue
versus saturation, distance from D65 and quadrant shows
(after Greenhouse–Geisser correction) significant effects
of hue versus saturation (F1,4¼ 60.8, p , 0.001), distance
from D65 (F1.22,4.92 ¼ 46.1, p , 0.001) and quadrant
(F1.67,6.66 ¼ 12.7, p ¼ 0.006). There was a highly significant
interaction between hue versus saturation and distance from
D65 (F1.64,6.57 ¼ 29.1, p , 0.001), and a marginally signifi-
cant interaction between distance from D65 and quadrant
(F1.5,6 ¼ 6.2, p ¼ 0.04).

In figure 4, we plot ratios of saturation thresholds to hue
thresholds for the separate quadrants of the MacLeod–
Boynton diagram. All quadrants show an increasing ratio
with increasing distance from the white point, but systematic
differences between quadrants are apparent. The superiority
of hue discrimination is most marked in Q4 (upper left)
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Figure 2. Results for an individual observer. The three panels show thresholds measured at three different distances from the white point. Within each panel, pairs
of threshold (saturation and hue) are shown for the four quadrants of the MacLeod – Boynton diagram, numbered as in figure 1b. Thresholds are expressed as the
difference (D) in L/(L þ M ) coordinate between target and distractors. Error bars show +1 s.e.m. and are based on the variance of five independent measures of
each threshold.
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Figure 3. Average results for five observers, plotted in the MacLeod –
Boynton diagram. The dashes directly show the separation of targets and dis-
tractors at threshold. D65 indicates the chromaticity of the neutral adapting
field. The dotted line indicates part of the spectrum locus.
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Figure 4. Ratios of saturation and hue thresholds. Ratios are shown separ-
ately for each quadrant of the MacLeod – Boynton diagram (numbered as in
figure 1b). (Online version in colour.)
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Superior discrimination for hue than for
saturation and an explanation in terms
of correlated neural noise
M. V. Danilova1,2 and J. D. Mollon2

1Laboratory of Visual Physiology, I. P. Pavlov Institute of Physiology, Nab. Makarova 6, St Petersburg 199034,
Russia
2Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK

The precision of human colour discrimination depends on the region of
colour space in which measurements are made and on the direction in
which the compared colours—the discriminanda—differ. Working in a
MacLeod–Boynton chromaticity diagram scaled so that thresholds at the
white point were equal for the two axes, we made measurements at reference
points lying on lines that passed at 458 or 2458 through the white point. At a
given reference chromaticity, we measured thresholds either for saturation
(i.e. for discriminanda lying radially along the line passing through the
white point) or for hue (i.e. for discriminanda lying on a tangent of a circle
passing through the reference point and centred on the white point). The
discriminanda always straddled the reference point in chromaticity. The attrac-
tion of this arrangement is that the two thresholds can be expressed in common
units. All that differs between saturation and hue measurements is the phase
with which the short-wave signal is combined with the long-/middle-wave
signal. Except for chromaticities very close to the white point, saturation
thresholds were systematically higher than hue thresholds. We offer a possible
explanation in terms of correlated neural noise.

1. Introduction
In the normal human retina, there are three classes of cone, maximally sensitive in
different spectral regions [1]; and our perception of colour depends on neural
comparisons of the rates at which photons are absorbed in the different classes
[2]. Given three univariant signals, and thus two independent ratios, all visible
colours can be represented on a two-dimensional surface. An example of such a
‘chromaticity diagram’ is the MacLeod–Boynton diagram (figure 1), whose ordi-
nates are L/(L þM) and S/(L þM), where L, M and S are the excitations of the
long-, middle- and short-wave cones, respectively [3]. The two ordinates of this
diagram have physiological counterparts: they correspond to the signals extracted
by retinal ganglion cells of the midget and the small bistratified types [2].

Although a chromaticity diagram represents all colours, such diagrams do not
accurately predict the discriminability of pairs of colours. A pair of chromaticities
separated by a given geometrical distance in the diagram may or may not have
the same discriminability as a second pair separated by the same distance, depend-
ing on the region of the diagram in which the paired chromaticities lie, the direction
in which the individual chromaticities differ and the state of adaptation of the eye
[3–6]. Yet, in many civil and commercial domains, it is important to be able to pre-
dict when two samples will be noticeably different in colour; and several linear and
nonlinear transformations of the CIE(1931) chromaticity diagram have been intro-
duced, in successive attempts to achieve a ‘uniform colour space’ in which pairs
of colours that are equally discriminable are separated by equal distances [7,8].

(a) The super-importance of hue differences and the problem of
Mongean noise

In this study, we compare two fundamental subtypes of colour discrimination:
discrimination of saturation and discrimination of hue. We define the two types

& 2016 The Author(s) Published by the Royal Society. All rights reserved.



Hue histogram - 6,476 natural objects’ reflectances

■ Object categories
bark, flowers, fruits, grass, human 

skin and hair, leaves, lichen, pelage, 
plants, rocks, stone, snow, soil, tree 

logs, vegetable, vegetation etc..

■ Sampled from 7 databases
(Barnard, Brown, Cambridge, Fred, 
Krinov, Matsumoto and Morimoto)

9.1%

71.0%
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RGB images
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images
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Takuma Morimoto, Arash Akbarinia, Laysa Hedjar, Shuchen Guan, Matteo Toscani, and Karl Gegenfurtner:
Spontaneous Emergence of Asymmetries in Chromatic Discrimination From Deep Neural Networks Trained on 
Real-World Colour Images. In preparation.



Deep Neural Networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.
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Color, objects and image segmentation

Gegenfurtner & Kiper, Annual Review of Neuroscience, 2003
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Color in natural scenes

http://tabby.vision.mcgill.ca



Color in natural scenes

http://tabby.vision.mcgill.ca

Materials and methods

We analyzed calibrated color images. Images were first trans-
formed into LMS cone space, where each pixel contains the
relative capture ratios of the three human cone types. The LMS
cone signals were then transformed into a cone-opponent repre-
sentation of luminance (Lum), reddish-greenish (L ! M), and
purplish-yellowish [S ! (L + M)] signal variations. Next, local
edge contrasts were extracted, and the joint edge histograms for
each of the three possible pairs of edge responses were computed
(i.e., two achromatic–chromatic joint edge histograms Lum/L ! M
and Lum/S ! (L + M) and one chromatic–chromatic joint edge
histogram L ! M/S ! (L + M).

Database

The images were obtained from two publicly available image
databases: the McGill calibrated color image database (Olmos &
Kingdom, 2004a) and the Bristol hyperspectral images database
(Párraga et al., 1998).

We have analyzed the Bristol database of hyperspectral images
to ensure that our results are independent of the constraints and
potential limitations of the McGill database (Olmos & Kingdom,
2004b). Results for the Bristol database are presented in the
Appendix.

The McGill calibrated color image database contains 708
images (Olmos & Kingdom, 2004a). The images have a size of
768 3 576 pixels and are grouped into nine categories, namely
animals, flowers, foliage, fruits, land and water, man-made, shad-
ows, snow, and textures (Fig. 1). The images are stored as standard
RGB images in TIFF and were converted to LMS cone excitation
space using a conversion function provided by the authors of the
database.

The calibration procedure used to generate the conversion func-
tion was developed by T. Troscianko and A. Parraga (University of
Bristol, UK) and has been described elsewhere (Párraga et al.,
2002; Johnson et al., 2005). Briefly, the calibration involves a
gamma-correction and a measurement of the spectral sensitivities
of the RGB camera sensors. For the gamma correction, the
luminance response functions of the camera RGB sensors were
determined by illuminating a set of six gray Munsell papers and
taking average RGB camera values as well as measured luminance
values. A gamma function was then fitted and inverted to linearize
the mapping between RGB values signaled by the camera and
measured luminance values. The spectral sensitivities of the three
camera sensors were measured by taking photographs of a white
target through a series of optical narrow-band interference filters
spanning the range from 400 to 700 nm. The calibration process
converts an RGB camera image to a trichromatic representation,
where each pixel contains the relative capture ratios of the three

Fig. 1. (Color online) Sample images of each category of the McGill database. Each row shows sample images from the nine categories
of the image database (animals, flowers, foliage, fruits, land and water, man-made, shadows, snow, and textures).

36 Hansen & Gegenfurtner



gives the amount of information that X and Y share. Mutual
information is zero for independent random variables. Mutual
information is maximal if the random variables are dependent.
The maximum value that the mutual information can assume
depends on the number of discrete elements in the random
variables: If the random variables X and Y both have N discrete
elements, the maximum mutual information between X and Y is
log2(N). Thus, for edge histograms of N 3 N bins, the mutual
information can take a maximum value of log2(N); for example,
10 for N 5 1024 bins. Unless noted otherwise, all reported values
of mutual information are for bin size 1024.

Results

Starting with a separation of the image in a luminance plane and
two chromatic planes, we computed the joint edge histogram that
reveals the co-occurrence of chromatic and luminance edge
contrasts. Results for a sample image and the joint statistics of
luminance and L ! M edges are shown in Fig. 2.

In a joint edge histogram, the value at the position (i, j) denotes
the number of pixels with edge contrast i in one channel and edge
contrast j at the same location in the other channel. The darker the
gray, the more frequent is the particular combination of edges. The
joint edge histogram in Fig. 2 peaked at zero contrast, because
edges are rare events and most pixels in an image are not an
edge. This was a general pattern that occurred in all images.

More interesting are the points in the joint histogram that
correspond to nonzero contrast in one or two channels. For this
image, we have strong responses along the achromatic luminance
axis (sample points 3 and 4 in Fig. 2) and also along the L ! M
axis (sample points 1 and 2). Points in the joint histogram along
the chromatic L ! M correspond to isoluminant edges, which
were obviously present in this image, and also in the joint
histogram of all images of the database, as will be shown below.
There were also edges that combined chromatic and luminance
contrasts (e.g., sample points 5, 6, and 7). These points fell along
the second diagonal, where a red–green contrast co-occurs with
a dark–light contrast. The reverse combination of contrasts (bright
red next to dark green) was less frequent, resulting in few gray
values of high joint contrast along the main diagonal in the joint
histogram.

To investigate the global pattern of the co-occurrence of
chromatic and luminance edges, we computed the joint edge
histograms for all 708 images of the McGill database (Olmos &
Kingdom, 2004a). For each image, three joint edge histograms
were computed for the possible combinations of edges detected in
the three channels, a luminance channel (Lum) and two chromatic
channels [L ! M and S ! (L + M)]. The two chromatic channels
were derived by combining input from the three types of cones
(L, M, and S) in an opponent way. The joint edge histograms
averaged across images are depicted in Fig. 3. We found that
isoluminant edges exist in natural scenes and were not rarer than

Fig. 2. (Color online) Overview of the joint histogram computation. A color image (a) is separated into a luminance image (b) and an
L ! M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint
edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of
the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are
not an edge. More interestingly, the edge strengths in the two planes are largely independent: purely chromatic edges (1, 2, 8) occur as
well as purely luminance edges (3, 4) or edges that combine chromatic and luminance contrasts (5, 6, 7). A contrast in one dimension is
not predictive for the most likely contrast in the other dimension.

38 Hansen & Gegenfurtner
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gives the amount of information that X and Y share. Mutual
information is zero for independent random variables. Mutual
information is maximal if the random variables are dependent.
The maximum value that the mutual information can assume
depends on the number of discrete elements in the random
variables: If the random variables X and Y both have N discrete
elements, the maximum mutual information between X and Y is
log2(N). Thus, for edge histograms of N 3 N bins, the mutual
information can take a maximum value of log2(N); for example,
10 for N 5 1024 bins. Unless noted otherwise, all reported values
of mutual information are for bin size 1024.

Results

Starting with a separation of the image in a luminance plane and
two chromatic planes, we computed the joint edge histogram that
reveals the co-occurrence of chromatic and luminance edge
contrasts. Results for a sample image and the joint statistics of
luminance and L ! M edges are shown in Fig. 2.

In a joint edge histogram, the value at the position (i, j) denotes
the number of pixels with edge contrast i in one channel and edge
contrast j at the same location in the other channel. The darker the
gray, the more frequent is the particular combination of edges. The
joint edge histogram in Fig. 2 peaked at zero contrast, because
edges are rare events and most pixels in an image are not an
edge. This was a general pattern that occurred in all images.

More interesting are the points in the joint histogram that
correspond to nonzero contrast in one or two channels. For this
image, we have strong responses along the achromatic luminance
axis (sample points 3 and 4 in Fig. 2) and also along the L ! M
axis (sample points 1 and 2). Points in the joint histogram along
the chromatic L ! M correspond to isoluminant edges, which
were obviously present in this image, and also in the joint
histogram of all images of the database, as will be shown below.
There were also edges that combined chromatic and luminance
contrasts (e.g., sample points 5, 6, and 7). These points fell along
the second diagonal, where a red–green contrast co-occurs with
a dark–light contrast. The reverse combination of contrasts (bright
red next to dark green) was less frequent, resulting in few gray
values of high joint contrast along the main diagonal in the joint
histogram.

To investigate the global pattern of the co-occurrence of
chromatic and luminance edges, we computed the joint edge
histograms for all 708 images of the McGill database (Olmos &
Kingdom, 2004a). For each image, three joint edge histograms
were computed for the possible combinations of edges detected in
the three channels, a luminance channel (Lum) and two chromatic
channels [L ! M and S ! (L + M)]. The two chromatic channels
were derived by combining input from the three types of cones
(L, M, and S) in an opponent way. The joint edge histograms
averaged across images are depicted in Fig. 3. We found that
isoluminant edges exist in natural scenes and were not rarer than

Fig. 2. (Color online) Overview of the joint histogram computation. A color image (a) is separated into a luminance image (b) and an
L ! M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint
edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of
the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are
not an edge. More interestingly, the edge strengths in the two planes are largely independent: purely chromatic edges (1, 2, 8) occur as
well as purely luminance edges (3, 4) or edges that combine chromatic and luminance contrasts (5, 6, 7). A contrast in one dimension is
not predictive for the most likely contrast in the other dimension.
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Color and orientation tuning

preference index (CPI), a measure of each neu-
ron’s response to full-contrast achromatic versus
equiluminant colored stimuli. Neuronswith posi-
tive values respond more strongly to their pre-
ferred equiluminant colored stimulus than to a
full-contrast achromatic stimulus, whereas those
with negative values prefer achromatic stimuli.
Values greater than 0.33 or less than −0.33 cor-
respond to neurons that respond twice as strongly
to colored or to achromatic stimuli, respectively.
There were nearly as many neurons that pre-

ferred color [CPI > 0; 2018 of 4351 cells (46.4%)]
as there were neurons that preferred achromatic
stimuli [CPI < 0; 2333 of 4351 cells (53.6%)] and
also nearly as many that responded at least twice
as strongly to their preferred color [CPI > 0.33;
828 of 4351 cells (19.0%)] as those that responded
at least twice as strongly to achromatic stimuli
[CPI < −0.33; 906 of 4351 cells (20.8%)]. Pairs of
neurons that were located closer to each other
tended to have more-similar CPI values (fig. S5),
suggestive of micro-organization of color prefer-
ence. In contrast to the trend for the orientation
selectivity index (OSI) to be negatively correlated
with CO staining intensity (Fig. 3B) (P < 0.001,
one-sample t test), CPI was positively correlated
(Fig. 3C) (P = 0.057, one-sample t test), which is
consistent with previous findings that color re-
sponsiveness is greater in blobs (16). We found a
significant negative correlation between the CPI
and OSI of neurons (Fig. 3A) (P = 0.005, one-
sample t test), in contrast with previous studies
that reported no relationship between orienta-

tion and color tuning (7, 19). Despite the sta-
tistically significant trends, we did not find any
evidence of strict segregation between these
measures.
Are there neurons that strongly prefer color

and are also strongly tuned for orientation?
Neurons that respond at least twice as strongly
to their preferred versus orthogonal orientation
have an OSI of 0.5 or greater, indicated by the
dashed horizontal line in Fig. 3A. Thus, neurons
that are both strongly orientation tuned (OSI >
0.5) and strongly prefer equiluminant color over
achromatic stimuli (CPI > 0.33) are found in the
upper right sector of Fig. 3A. Such cells consti-
tute 11.6% (503 of 4351) of the visually responsive
sample. Not only is this a substantial proportion
of the entire sample, but there are actually more
neurons in this sector than there are strongly
color-preferring neurons (CPI > 0.33) that have
an OSI < 0.5 (Fig. 3A, bottom-right sector) [7.5%
(325 of 4351 cells)], indicating that a majority of
the color-preferring population is highly orien-
tation selective. The overwhelming majority
(97.2%) of neurons with a CPI > 0.33 were hue
selective (805 of 828 cells), demonstrating that
they responded selectively to one or more hues.
Our ability to study the responses of large, con-

tiguous populations of V1 neurons to luminance-
modulated achromatic and equiluminant colored
stimuli while also recording their locations rela-
tive to CO staining yielded both expected and
unexpected relationships between these param-
eters. In Fig. 3D, we provide histograms of the

locations of neurons relative to CO intensity for
each of the six sectors of Fig. 3A. Unoriented,
color-preferring neurons (CPI > 0.33, OSI < 0.5)
were predominantly located in regions of intense
CO staining (Fig. 3D, bottom right). However, we
also discovered a larger neuronal population of
strongly color-preferring, orientation-tuned neu-
rons (CPI > 0.33, OSI > 0.5) that were located in
regions with significantly lower CO staining
intensity (P = 0.009, two-sample t test). These
trends can also be seen in the example imaging
regions illustrated in Fig. 2. For example, the
imaging region illustrated in Fig. 2, E to H,
contains a population of neurons in a weakly
CO-stained region (at the bottom right) that is
orientation selective and prefers color over achro-
matic stimuli. In contrast, the color-preferring
neurons in the more intensely CO-stained region
at the middle of the imaging region were not
orientation selective. Trends in the other four
sectors (Fig. 3D) were largely as expected given
the overall trends for lower OSI and higher CPI at
more intensely stained regions (Fig. 3, B and C).
The anatomical separation of oriented, color-
selective neurons supports the notion that this is
a distinct population of neurons that integrates
color and orientation responses.
Previous studies have suggested that hue

preferences are organized across the surface of
V1 (11). The spatial organization of hue-selective
neurons and their relationship to CO histology
have not been analyzed with single-cell resolu-
tion. The vast majority of hue-selective neurons
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Fig. 3. Population statistics
demonstrating mutual
representation of color and
orientation. (A) Relationship
between CPI and OSI for all cells.
Neurons above the horizontal
dashed line responded at least
twice as strongly to their
preferred versus orthogonal
orientation (OSI > 0.5). Vertical
dashed lines represent CPI =
−0.33 and 0.33 (neurons
responded twice as strongly to
achromatic or equiluminant
colored stimuli, respectively).
(B) Relationship between CO
intensity and OSI. Trend line fit
using least-squares linear
regression. r, correlation
coefficient. (C) Same as (C),
for CO intensity versus CPI.
(D) Histograms of neurons in
each region of (A), based
on CO intensity. Because of
geometric considerations,
the numbers of cells sampled
are not equal in each bin.
The actual sampling distribu-
tions are shown in fig. S2G.
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gives the amount of information that X and Y share. Mutual
information is zero for independent random variables. Mutual
information is maximal if the random variables are dependent.
The maximum value that the mutual information can assume
depends on the number of discrete elements in the random
variables: If the random variables X and Y both have N discrete
elements, the maximum mutual information between X and Y is
log2(N). Thus, for edge histograms of N 3 N bins, the mutual
information can take a maximum value of log2(N); for example,
10 for N 5 1024 bins. Unless noted otherwise, all reported values
of mutual information are for bin size 1024.

Results

Starting with a separation of the image in a luminance plane and
two chromatic planes, we computed the joint edge histogram that
reveals the co-occurrence of chromatic and luminance edge
contrasts. Results for a sample image and the joint statistics of
luminance and L ! M edges are shown in Fig. 2.

In a joint edge histogram, the value at the position (i, j) denotes
the number of pixels with edge contrast i in one channel and edge
contrast j at the same location in the other channel. The darker the
gray, the more frequent is the particular combination of edges. The
joint edge histogram in Fig. 2 peaked at zero contrast, because
edges are rare events and most pixels in an image are not an
edge. This was a general pattern that occurred in all images.

More interesting are the points in the joint histogram that
correspond to nonzero contrast in one or two channels. For this
image, we have strong responses along the achromatic luminance
axis (sample points 3 and 4 in Fig. 2) and also along the L ! M
axis (sample points 1 and 2). Points in the joint histogram along
the chromatic L ! M correspond to isoluminant edges, which
were obviously present in this image, and also in the joint
histogram of all images of the database, as will be shown below.
There were also edges that combined chromatic and luminance
contrasts (e.g., sample points 5, 6, and 7). These points fell along
the second diagonal, where a red–green contrast co-occurs with
a dark–light contrast. The reverse combination of contrasts (bright
red next to dark green) was less frequent, resulting in few gray
values of high joint contrast along the main diagonal in the joint
histogram.

To investigate the global pattern of the co-occurrence of
chromatic and luminance edges, we computed the joint edge
histograms for all 708 images of the McGill database (Olmos &
Kingdom, 2004a). For each image, three joint edge histograms
were computed for the possible combinations of edges detected in
the three channels, a luminance channel (Lum) and two chromatic
channels [L ! M and S ! (L + M)]. The two chromatic channels
were derived by combining input from the three types of cones
(L, M, and S) in an opponent way. The joint edge histograms
averaged across images are depicted in Fig. 3. We found that
isoluminant edges exist in natural scenes and were not rarer than

Fig. 2. (Color online) Overview of the joint histogram computation. A color image (a) is separated into a luminance image (b) and an
L ! M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint
edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of
the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are
not an edge. More interestingly, the edge strengths in the two planes are largely independent: purely chromatic edges (1, 2, 8) occur as
well as purely luminance edges (3, 4) or edges that combine chromatic and luminance contrasts (5, 6, 7). A contrast in one dimension is
not predictive for the most likely contrast in the other dimension.
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L ! M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint
edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of
the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are
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Color constancy is high under real-world conditions, with a single uniform illuminant and a large field of view.

Kraft & Brainard, 
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Figure 5: Effect of the illumination on Color Constancy: Dis-
tributions of DeepCC’s mean Color Constancy Index (CCI) for
each Munsell class under each of the 4 testing illuminations. Me-
dians are in red. Each dot of the beeswarm plots is to the average
CCI found for a training instance of DeepCC. Statistical signif-
icance was computed applying pairwise t-tests with Bonferonni
corrections.

for the “familiar” illuminations (Yellow and Blue) than for the
“unfamiliar” illuminations (Green and Red). The highest degree
of color constancy was found under the Yellow illumination with
an average CCI value of 0.86 while the lowest was found under
the Red illumination with aan average CCI value of 0.64.

Results of Figure 5 are very similar to observations made re-
garding the capacity of humans to perceive illumination changes
(Pearce et al.,2014;Aston et al.,2019). It was found that human
observers were more sensitive to illumination changes happening
along the green-red color direction compared to changes along
the yellow-blue direction, meaning that they are less likely to per-
ceive an illumination shift along the yellow-blue direction than
along the green-red one. This suggests, the authors argue, that
the human visual system compensates better for changes in the
blue-yellow directions, which could have consequences for color
constancy.

Interim conclusion

Results in this section show a significant effect of the il-
lumination on DeepCC’s performance. Higher color constancy
indices were observed for illuminations along the yellow-blue
direction in CIEL*a*b* color space compared to illuminations
falling onto the orthogonal direction. This difference is presum-
ably explained by the model being more accustomed to varia-
tions along the daylight locus, the direction along which daylight
and natural illuminations, such as the ones used for training, vary

most. The parallel one can draw between our result and observa-
tions made in human psychophysics (Aston et al.,2019) implies
that the higher variation along the daylight locus may be a cause
of similar consequences in humans.

Color constancy throughout DeepCC

There is uncertainty regarding where the neural mechanisms
for color constancy would take place in the brain. Many stud-
ies emphasize early mechanisms, such as cone adaptation (Lee,
Dacey, Smith, & Pokorny,1999), or cells sensitive to chromatic
contrasts between object and background in V1 (Wachtler, Se-
jnowski, & Albright,2003). Other have shown that lesions in
macaque areas V4 also led to impaired color constancy (Wild,
Butler, Carden, & Kulikowski,1985) (see (Foster,2011) for a re-
view). In contrast to biological brains, deep neural networks like
DeepCC allow access to the activations of every unit. Taking
advantage of this, we added linear readouts to every layer of
DeepCC in order to measure at which processing step color con-
stancy emerges.

Methods

In order to apply the Color Constancy Index at different pro-
cessing stages of DeepCC, we trained readout networks for each
one of its 5 layers (3 convolutional and 2 fully connected). These
linear probes (Alain & Bengio,2016) consisted of very simple,
fully connected linear models with 1600 kernels, 1 per Munsell
class. They take as input the ReLU corrected output of DeepCC’s
layer they readout, before the maxpooling operation. For exam-
ple, the readout network of DeepCC’s first convolutional layer
(RC1) takes as input the output of that layer after the ReLU oper-
ation and is trained on the same task as DeepCC, using the same
dataset. The parameters of DeepCC’s convolutional layer are not
updated during this training iterations, only the weights of RC1.
RC1 being fully connected and linear, no complex or non-linear
operations are added and as such, RC1’s performance is an in-
dication of amount of information available in the first convolu-
tional layer of DeepCC.

Results

Figure 6 shows the average CCI obtained for DeepCC read-
out models. We named these readout models RC1, RC2, RC3
and RF1, RF2 corresponding to the convolutional layers 1, 2, 3
and the fully connected layers 1, 2 respectively. We trained 10 in-
stances of each readout model, one for each instance of the orig-
inal model. As shown in the plot, the readout models were tested
under 2 conditions: CCnormal (black) and CCnopatch (cyan). Er-
ror bars are the standard deviation obtained across the 10 training
instances. The color constancy index CCI gradually increases in
the normal condition in an almost linear fashion across process-
ing stages, consistently across the ten models. In the nopatch
condition, CCI follows the normal condition only up to RC2, at
which point in continues increasing but at a much lower rate. The
difference between the 2 conditions becomes significant from

A DNN (DeepCC) can achieve close-to-
perfect color constancy using naturalistic 
input stimuli

Color constancy gradually increases 
throughout the network layers

DeepCC evolves a human-like representation 
of hue, chroma and lightness

Every single network node is available for 
further analysis and can be compared to 
neurophysiological data
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Color vision: from pixels to objects
• Classic color vision

– Defined by 3 color coordinates
– No direct relationship to real-world objects

• Objects
– Defined by distributions in color space
– Hue is the major invariant, important for segmentation and memory
– Lightness and saturation derived from distributions

• Natural scenes
– Feasible in VR, DNNs (and neuroimaging: MEG, fMRI, 2pi)
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Thanks!

Materials and methods

We analyzed calibrated color images. Images were first trans-
formed into LMS cone space, where each pixel contains the
relative capture ratios of the three human cone types. The LMS
cone signals were then transformed into a cone-opponent repre-
sentation of luminance (Lum), reddish-greenish (L ! M), and
purplish-yellowish [S ! (L + M)] signal variations. Next, local
edge contrasts were extracted, and the joint edge histograms for
each of the three possible pairs of edge responses were computed
(i.e., two achromatic–chromatic joint edge histograms Lum/L ! M
and Lum/S ! (L + M) and one chromatic–chromatic joint edge
histogram L ! M/S ! (L + M).

Database

The images were obtained from two publicly available image
databases: the McGill calibrated color image database (Olmos &
Kingdom, 2004a) and the Bristol hyperspectral images database
(Párraga et al., 1998).

We have analyzed the Bristol database of hyperspectral images
to ensure that our results are independent of the constraints and
potential limitations of the McGill database (Olmos & Kingdom,
2004b). Results for the Bristol database are presented in the
Appendix.

The McGill calibrated color image database contains 708
images (Olmos & Kingdom, 2004a). The images have a size of
768 3 576 pixels and are grouped into nine categories, namely
animals, flowers, foliage, fruits, land and water, man-made, shad-
ows, snow, and textures (Fig. 1). The images are stored as standard
RGB images in TIFF and were converted to LMS cone excitation
space using a conversion function provided by the authors of the
database.

The calibration procedure used to generate the conversion func-
tion was developed by T. Troscianko and A. Parraga (University of
Bristol, UK) and has been described elsewhere (Párraga et al.,
2002; Johnson et al., 2005). Briefly, the calibration involves a
gamma-correction and a measurement of the spectral sensitivities
of the RGB camera sensors. For the gamma correction, the
luminance response functions of the camera RGB sensors were
determined by illuminating a set of six gray Munsell papers and
taking average RGB camera values as well as measured luminance
values. A gamma function was then fitted and inverted to linearize
the mapping between RGB values signaled by the camera and
measured luminance values. The spectral sensitivities of the three
camera sensors were measured by taking photographs of a white
target through a series of optical narrow-band interference filters
spanning the range from 400 to 700 nm. The calibration process
converts an RGB camera image to a trichromatic representation,
where each pixel contains the relative capture ratios of the three

Fig. 1. (Color online) Sample images of each category of the McGill database. Each row shows sample images from the nine categories
of the image database (animals, flowers, foliage, fruits, land and water, man-made, shadows, snow, and textures).
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gives the amount of information that X and Y share. Mutual
information is zero for independent random variables. Mutual
information is maximal if the random variables are dependent.
The maximum value that the mutual information can assume
depends on the number of discrete elements in the random
variables: If the random variables X and Y both have N discrete
elements, the maximum mutual information between X and Y is
log2(N). Thus, for edge histograms of N 3 N bins, the mutual
information can take a maximum value of log2(N); for example,
10 for N 5 1024 bins. Unless noted otherwise, all reported values
of mutual information are for bin size 1024.

Results

Starting with a separation of the image in a luminance plane and
two chromatic planes, we computed the joint edge histogram that
reveals the co-occurrence of chromatic and luminance edge
contrasts. Results for a sample image and the joint statistics of
luminance and L ! M edges are shown in Fig. 2.

In a joint edge histogram, the value at the position (i, j) denotes
the number of pixels with edge contrast i in one channel and edge
contrast j at the same location in the other channel. The darker the
gray, the more frequent is the particular combination of edges. The
joint edge histogram in Fig. 2 peaked at zero contrast, because
edges are rare events and most pixels in an image are not an
edge. This was a general pattern that occurred in all images.

More interesting are the points in the joint histogram that
correspond to nonzero contrast in one or two channels. For this
image, we have strong responses along the achromatic luminance
axis (sample points 3 and 4 in Fig. 2) and also along the L ! M
axis (sample points 1 and 2). Points in the joint histogram along
the chromatic L ! M correspond to isoluminant edges, which
were obviously present in this image, and also in the joint
histogram of all images of the database, as will be shown below.
There were also edges that combined chromatic and luminance
contrasts (e.g., sample points 5, 6, and 7). These points fell along
the second diagonal, where a red–green contrast co-occurs with
a dark–light contrast. The reverse combination of contrasts (bright
red next to dark green) was less frequent, resulting in few gray
values of high joint contrast along the main diagonal in the joint
histogram.

To investigate the global pattern of the co-occurrence of
chromatic and luminance edges, we computed the joint edge
histograms for all 708 images of the McGill database (Olmos &
Kingdom, 2004a). For each image, three joint edge histograms
were computed for the possible combinations of edges detected in
the three channels, a luminance channel (Lum) and two chromatic
channels [L ! M and S ! (L + M)]. The two chromatic channels
were derived by combining input from the three types of cones
(L, M, and S) in an opponent way. The joint edge histograms
averaged across images are depicted in Fig. 3. We found that
isoluminant edges exist in natural scenes and were not rarer than

Fig. 2. (Color online) Overview of the joint histogram computation. A color image (a) is separated into a luminance image (b) and an
L ! M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint
edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of
the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are
not an edge. More interestingly, the edge strengths in the two planes are largely independent: purely chromatic edges (1, 2, 8) occur as
well as purely luminance edges (3, 4) or edges that combine chromatic and luminance contrasts (5, 6, 7). A contrast in one dimension is
not predictive for the most likely contrast in the other dimension.
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