DIAMOND PHOTONICS: CONNECTING QUANTUM SYSTEMS WITH LIGHT AND SOUND

Paul Barclay University of Calgary Institute for Quantum Science and Technology

Outline

Why diamond photonics?

Physical properties of diamond

Quantum photonics

Nanofabrication

Diamond quantum interfaces: recent advances

Quantum photonics

Optomechanics

Challenges

Outline

Why diamond photonics?

Physical properties of diamond

Quantum photonics

Nanofabrication

Diamond quantum interfaces: recent advances

Quantum photonics

Optomechanics

Challenges

7538

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 23, DECEMBER 1, 2022

Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons

Prasoon K. Shandilya^(D), Sigurd Flågan^(D), Natalia C. Carvalho^(D), Elham Zohari^(D), Vinaya K. Kavatamane^(D), Joseph E. Losby, and Paul E. Barclay^(D)

(Invited Tutorial)

Bharadwaj et al. J. Phys.: Photonics 1, 022001 (2019)

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window

CVD grown Can be ultrapure (< 1ppb)

Available commercially e.g. Element Six (UK)

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window

https://e6cvd.com/us/application/all.html

CVD grown Can be ultrapure (< 1ppb)

Available commercially e.g. Element Six (UK)

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window Low multiphoton absorption

Wang et al. ACS Appl. Mater. Interfaces 10, 18935 (2018)

Optics:

Mechanics:

Moderate refractive index (n ~ 2.4) Huge transparency window

Low multiphoton absorption

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window Low multiphoton absorption Tao, Degen et al. Nature Comms. 5, 3638 (2014)

Mechanics:

Ultrahigh stiffness High Debye temp Low mechanical dissipation High thermal conductivity Jayakumar, Barclay et al. Phys. Rev. Appl. (2021)

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window Low multiphoton absorption

Mechanics:

Ultrahigh stiffness High Debye temp Low mechanical dissipation High thermal conductivity

Quantum:

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window Low multiphoton absorption

Mechanics:

Ultrahigh stiffness High Debye temp Low mechanical dissipation High thermal conductivity

Quantum:

Optically active defects

Optics:

Moderate refractive index (n ~ 2.4) Huge transparency window Low multiphoton absorption

Mechanics: Ultrahigh stiffness High Debye temp Low mechanical dissipation High thermal conductivity

Quantum: Optically active defects/spins

Single electron spin control (~ ms @ 300K) Single nuclear spin control (~ s @ 300K) Indistinguishable photons (@ 4K)

Wrachtrup, Lukin, Awschalom

Over 100 colour centres in diamond crystals

Over 100 colour centres in diamond crystals Studied since the 1970s

Printed in Great Britain Optical studies of the 1.945 eV vibronic band in diamond BY G. DAVIES AND M. F. HAMER Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS

J. Phys. C: Solid State Phys., 16 (1983) 2177-2181. Printed in Great Britain

Proc. R. Soc. Lond. A. 348, 285-298 (1976)

Luminescence decay time of the 1.945 eV centre in type Ib diamond

A T Collins[†], M F Thomaz[‡] and Maria Isabel B Jorge[‡] [†] Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK [‡] Departamento de Física and Centro de Física (INIC), Universidade de Aveiro, 3800 Aveiro, Portugal

J. Phys. C: Solid State Phys., 17 (1984) L233-L236. Printed in Great Britain

Persistent spectral hole burning of colour centres in diamond

R T Harley[†], M J Henderson[‡] and R M Macfarlane[§]

- † GEC Research Laboratories, Hirst Research Centre, Wembley, UK
- ‡ Clarendon Laboratory, Parks Road, Oxford, UK
- § IBM Research Laboratory, 5600 Cottle Road, San Jose, California 95193, USA

Journal of Luminescence Volume 38, Issues 1–6, 1 December 1987, Pages 46-47

Two-laser spectral hole burning in a colour centre in diamond

N.R.S. Reddy, N.B. Manson

Laser Physics Centre, Research School of Physical Sciences, Australia

E.R. Krausz

Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia

Abstract

Using two high-resolution lasers a short lived (~1 ms) hole burning spectrum has been observed in the 637 nm zero-phonon transition associated with the nitrogenvacancy centre in diamond. Amongst the prominent antiholes the ones at ± 2.88 GHz coincide in frequency with that obtained in EPR for a spin-doublet-singlet splitting of a metastable ³A state. In this work it is claimed that ³A is the ground state and this is supported by the observation of temperature-dependent magnetic circular dichroism signals. Details in the hole burning spectrum are then interpreted in terms of a strain split ³A s³E transition.

Breakthroughs: single photons

Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup,* C. von Borczyskowski

The fluorescence of individual nitrogen-vacancy defect centers in diamond was observed with room-temperature scanning confocal optical microscopy. The centers were photostable, showing no detectable change in their fluorescence emission spectrum as a function of time. Magnetic resonance on single centers at room temperature was shown to be feasible. The magnetic resonance spectra revealed marked changes in zero-field splitting parameters among different centers. These changes were attributed to straininduced differences in the symmetry of the centers.

SCIENCE • VOL. 276 • 27 JUNE 1997

PHYSICAL REVIEW A, VOLUME 64, 061802(R)

Nonclassical radiation from diamond nanocrystals

Alexios Beveratos,¹ Rosa Brouri,¹ Thierry Gacoin,² Jean-Philippe Poizat,¹ and Philippe Grangier¹ ¹Laboratoire Charles Fabry de l'Institut d'Optique, UMR 8501 du CNRS, Boite Postale 147, F-91403 Orsay Cedex, France ²Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, F-91128 Palaiseau, France (Received 4 April 2001; published 19 November 2001)

The quantum properties of the fluorescence light emitted by diamond nanocrystals containing a single nitrogen-vacancy (NV) colored center are investigated. We have observed photon antibunching with very low background light. This system is therefore a very good candidate for the production of single photon on demand. In addition, we have measured a larger NV center lifetime in nanocrystals than in the bulk, in good agreement with a simple quantum electrodynamical model.

Breakthroughs: single spins at room-T VOLUME 92, NUMBER 7 PHYSICAL REVIEW LETTERS 20 FEBRUARY 2004 Observation of Coherent Oscillations in a Single Electron Spin E. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup

 F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup
Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany (Received 2 September 2003; published 20 February 2004)

Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond

L. Childress,¹* M. V. Gurudev Dutt,¹* J. M. Taylor,¹ A. S. Zibrov,¹ F. Jelezko,² J. Wrachtrup,² P. R. Hemmer,³ M. D. Lukin¹†

SCIENCE VOL 314 13 OCTOBER 2006

Breakthroughs: single spins at room-T

VOLUME 92, NUMBER 7

PHYSICAL REVIEW LETTERS

week ending 20 FEBRUARY 2004

Observation of Coherent Oscillations in a Single Electron Spin

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany (Received 2 September 2003; published 20 February 2004)

L. Childress,¹* M. V. Gurudev Dutt,¹* J. M. Taylor,¹ A. S. Zibrov,¹ F. Jelezko,² J. Wrachtrup,² P. R. Hemmer,³ M. D. Lukin¹†

SCIENCE VOL 314 13 OCTOBER 2006

Ultralong spin coherence time in isotopically engineered diamond

Gopalakrishnan Balasubramanian¹, Philipp Neumann¹, Daniel Twitchen², Matthew Markham², Roman Kolesov¹, Norikazu Mizuochi^{1,3}, Junichi Isoya³, Jocelyn Achard⁴, Johannes Beck¹, Julia Tissler¹, Vincent Jacques¹, Philip R. Hemmer⁵, Fedor Jelezko^{1*} and Jörg Wrachtrup^{1*}

Aside: quantum sensing with spins

APPLIED PHYSICS LETTERS 92, 243111 (2008)

Scanning magnetic field microscope with a diamond single-spin sensor

C. L. Degen^{a)} IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA

High-sensitivity diamond magnetometer with nanoscale resolution

J. M. TAYLOR¹*, P. CAPPELLARO^{2,3}*, L. CHILDRESS^{2,4}, L. JIANG², D. BUDKER⁵, P. R. HEMMER⁶, A. YACOBY², R. WALSWORTH^{2,3} AND M. D. LUKIN^{2,31}

nature physics | VOL 4 | OCTOBER 2008 |

Scanning nitrogen-vacancy magnetometry down to 350 mK (2)

Aside: quantum sensing with spins

Capture surface magnetic fields at the atomic scale

Breakthroughs: quantum spin-photon entanglement

Quantum entanglement between an optical photon and a solid-state spin qubit

E. Togan¹*, Y. Chu¹*, A. S. Trifonov¹, L. Jiang^{1,2,3}, J. Maze¹, L. Childress^{1,4}, M. V. G. Dutt^{1,5}, A. S. Sørensen⁶, P. R. Hemmer⁷, A. S. Zibrov¹ & M. D. Lukin¹

NATURE Vol 466 5 August 2010

Heralded entanglement between solid-state qubits separated by three metres

H. Bernien¹, B. Hensen¹, W. Pfaff⁴, G. Koolstra¹, M. S. Blok¹, L. Robledo¹, T. H. Taminiau¹, M. Markham², D. J. Twitchen², L. Childress³ & R. Hanson¹

Breakthroughs: violating Bell's inequalities and quantum networking

TU Delft / Hanson group

First demonstration of loophole free violation of Bell's inequalities: Nature 526, 682 (2015)

Breakthroughs: violating Bell's inequalities and quantum networking

Realization of a multi-node quantum network of remote solid-state qubits Science 372, 259 (2021)

The role of nanophotonics in quantum networks

Wiring qubits together

Joannopoulos textbook circa 1995

The role of nanophotonics in quantum networks

Wiring qubits together – e.g. Lukin, Englund, Fu, Faraon, Waks etc.

Wan, Englund et al. Nature 583, 226 (2020)

The role of nanophotonics in diamond quantum photonics

Wiring qubits – e.g. Lukin, Englund, Fu, Faraon, Waks etc. Increasing emission rates – Purcell effect

Bhaskar et al. Nature **580**, 60 (2020)

The role of nanophotonics in diamond quantum photonics

Wiring qubits – e.g. Lukin, Englund, Fu, Faraon, Waks etc. Increasing emission rates – Purcell effect Converting information between mediums

Quantum transducers

Diamond nanofabrication

Wafer scale thin films available for conventional photonic materials: Si, SiN, GaAs, etc.

Fabricating diamond devices

Wafer scale thin films available for conventional photonic materials: Si, SiN, GaAs, etc.

Fig. 1. Schematic of silicon photonic wire waveguide.

Fabricating diamond devices

Wafer scale thin films available for conventional photonic materials: Si, SiN, GaAs, etc. How to create suspended **single crystal** diamond devices without thin films?

Single crystal diamond devices: brief history

Quantum nanophotonics:

Enhanced zpl photon generation

Faraon, Barclay et al., Nat. Photonics 2011 Riedrich-Möller, Becher et al., Nat. Nano. 2012 Efficient photon collection

Babinec, Loncar et al., Nat. Photonics 2010 Nonlinear optics

Hausmann, Loncar et al., Nat. Photonics 2014 Elements of quantum networks

Li, Schroeder, Englund et al., Nat. Comm. 2015

Nanomechanics

Scanning spin magnetometers

Maletinsky, Loncar, Lukin et al., Nat. Nano. 2012 Ultrahigh Q cantilevers

Tao, Degen, et al. Nat. Comm. 2014

Optomechanics: today's results

Fabricating diamond devices

Grote, R & Bassett, L; <u>APL Photonics 2016</u> <u>Aug 1; 1(7): 1302</u>

Schmidgall, Fu et al. Nano Lett. 18, 1175 (2018)

Evolution of diamond fabrication

Polycrystalline diamond devices: Pernice, Hu, others (2007 – onward)

Hybrid devices: Barclay/Fu/Santori (2008 – onward)

Evolution of diamond fabrication

Thin diamond films: Faraon, Loncar, Jayich, Degen (2010 –)

Ion milling: Prawer (2005), Loncar (2011), Becher (2012)

RIE angle etching: Loncar (2013)

Two new 3D etching techniques

Faraday cage etching

Harvard (Loncar) - 2014

Two new 3D etching techniques

Faraday cage etching

Plasma undercutting

Harvard (Burek/Loncar) - 2014

Calgary (Barclay) – 2015

Quasi-isotropic undercut etching

Inspired by silicon SCREAM process: Shaw, Zhang, MacDonald, Micro Electro Mechanical Systems (1993)

Khanaliloo, Jayakumar, Hryciw, Lake, Kaviani, Barclay, Phys. Rev. X (2015)

Adopted by: Englund (MIT), Vuckovic (Stanford), others ...
Quasi-isotropic undercut etching

Key insight:

Diamond and Related Materials Volume 13, Issues 11–12, November–December 2004, Pages 2207-2210

New etching process for device fabrication using diamond

D.S. Hwang ዳ 🖾, T. Saito, N. Fujimori

Diamond Research Center, National Institute of Advanced Industrial Science and Technology (AIST), TC2-13, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

D.S. Hwang et al. / Diamond & Related Materials 13 (2004) 2207-2210

Diamond undercutting

Diamond microdisk cavities

B. Khanaliloo, M. Mitchell, A.C. Hryciw, P.E. Barclay, Nano Letters 15, 5131 (2015)

Diamond microdisk cavities: optics

Optical mode spectroscopy: waveguide transmission vs. wavelength

Q > 300,000

Optical loss rate < mechanical frequency

Probing surface roughness

Quantum photonic interfaces: recent advances

Quantum photonics: recent advances

Quantum memory enhanced communication

Experimental demonstration of memoryenhanced quantum communication

 https://doi.org/10.1038/s41586-020-2103-5
 M. K. Bhaskar¹, R. Riedinger¹, B. Machielse¹, D. S. Levonian¹, C. T. Nguyen¹, E. N. Knall²,

 Received: 19 August 2019
 H. Park^{1,3}, D. Englund⁴, M. Lončar², D. D. Sukachev¹ & M. D. Lukin¹

Accepted: 16 January 2020

60 | Nature | Vol 580 | 2 April 2020

Quantum photonics: recent advances

New qubits:

Defect	Symmetry	ZPL Wavelength	DW Factor (ξ)	Lifetime (7)	ħ ∆ _{GS} /k _b ^ª
NV	C_{3v}	637 nm	0.03 [118]	11–13 ns	N/A
				[132,184]	
SiV	D_{3d}	737 nm	0.7 [185]	1.6-1.7 ns	2.4 K [135]
				(4 K)	
				[172,166,17	76]
GeV	D_{3d}	602 nm	0.6 [169]	6 ns [186]	7.3 K [186]
SnV	D_{3d}	619 nm	0.6 (5 K)	4.5-4.8 ns	41 K [167]
			[187]	[137,138]	
PbV	D_{3d}^{b}	520-552 nm	unknown	> 3 ns	200–270 K
		[188,189]		[188,189]	[188,189]
SiV0	D_{3d}	946 nm	0.9 [103]	1.8 ns	N/A
	04			[103]	

Janitz et al., Optica **7**, 1232 (2020)

Diamond spins + optomechanics

Question: can **phonons** be used to process information?

Ion trap quantum computers

PHYSICAL REVIEW A, VOLUME 62, 022311

Entanglement and quantum computation with ions in thermal motion

Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Denmark (Received 10 February 2000; revised manuscript received 1 May 2000; published 18 July 2000)

With bichromatic fields, it is possible to deterministically produce entangled states of trapped ions. In this paper we present a unified analysis of this process for both weak and strong fields, for slow and fast gates. Simple expressions for the fidelity of creating maximally entangled states of two or an arbitrary number of ions under nonideal conditions are derived and discussed.

PACS number(s): 03.67.Lx, 03.65.Bz, 89.70.+c

Question: can phonons be used to process information?

Qubit entanglement

Bienfait, Cleland et al. Science 364, 368 (2019)

Question: can phonons be used to process information?

Entanglement of "massive" mechanical resonators

Riedinger et al. and Ockeloen–Korppi et al. Nature 556 (2018)

Question: can phonons be used to process information?

Microwave to optical photon entanglement – networking superconducting QC

Phonons and solid-state qubits

Quantum interconnects

Article Open Access Published: 04 August 2021

A phononic interface between a superconducting quantum processor and quantum networked spin memories

Tomáš Neuman, Matt Eichenfield, Matthew E. Trusheim, Lisa Hackett, Prineha Narang 🖂 & Dirk Englund 🖂

npj Quantum Information 7, Article number: 121 (2021) Cite this article

Harnessing phonons: translating quantum information

Hybrid quantum interface: optomechanical spin control

Controlling diamond quantum memories with telecom photons

Cavity optomechanics

Photons transfer momentum to mirror, and vice versa

Strength of interaction is enhanced in nanoscale devices

Cavity optomechanics

Zoology of cavity optomechanical systems

Image from Florian Marquardt – MPQ / Universität Erlangen/Nürnberg

Diamond: ultimate optomechanical material?

CVD grown Can be ultrapure (< 1ppb)

Available commercially e.g. Element Six (UK)

Unmatched mechanical properties: low mechanical dissipation Large transparency window: low optical dissipation No two photon absorption: large field intensity

Potential for large optomechanical cooperativity

Diamond microdisk cavities: optics

Optical mode spectroscopy: waveguide transmission vs. wavelength

Diamond optomechanics

Behjat et al.

Optomechanical pulse storage

Photon-phonon conversion > optical and mechanical dissipation

Also see: work from Hailin Wang (Oregon), Sussman (NRC Ottawa)

Coherent phonon-photon interactions

Creating photon-phonon-photon interactions

Optomechanically induced transparency

No coupling:

Double OMIT

In phase input fields:

Double OMIT

Double OMIT

Response of blue and red probes is sensitive to their relative phase

 $\Delta \phi :$ phase difference between red/blue paths

If $\Delta \phi = \pi$: excite mechanical "dark mode"

Lake et al., Nature Communications 2020

Diamond optomechanics: summary

Can coherently control GHz mechanical resonances using optical fields

Spin-optomechanics

Lattice strain in NV centres

 $\varepsilon_{\!\!\perp}\sigma_{\!\!\perp}$

 $\epsilon_{\perp}=0.3 \text{ MHz/MPa}$

Mechanical driving of NV spin: early work

Also: Jayich (UCSB), Malentinsky (Basel) and Wang (Oregon)

Optomechanical spin control: setup

Optical microscope image

Photoluminescence scan

NV ensemble spin properties

Optomechanical spin control: phonon driving

Shandilya, Lake et al. Nature Physics 2021
Demonstration of optomechanical spin driving

Shandilya, Lake et al. Nature Physics 2021

Future direction: enhancing efficiency by 10¹⁰

Optomechanical crystals: boost cooperativity by orders of magnitude

Elham Zohari, Joe Losby

Future direction: enhancing efficiency by 10¹⁰

Optomechanical crystals: boost cooperativity by orders of magnitude

Diamond photonics: new opportunities

Routinely drop > 100 mW power into cavities with Q ~ 10^5

Opens doors to nonlinear phenomena...

Second (!) and third harmonic generation Many phonon processes

...and to quantum sensing

Torque magnetometry NV magnetometry with IR light

Team

Postdoctoral scholars

Joe Losby Natália Do Carmo Carvalho Sigurd Flagan Vinaya Kavatamane

Graduate Students

Elham Zohari (at UofA) Bishnu Behera Prasoon Shandiliya Xinyuan Ma Parisa Behjat Peyman Parsa Waleed El Sayeed Joe Itoh Ahmas El-Hamamsy **Spin-mechanics alumni**

Denis Sukachev (now at AWS Quantum) David Lake (now at Caltech) Matthew Mitchell (now at UBC)

PDFs + PhDs: join us!

Single crystal diamond nanobeams

Diamond waveguide optomechanics

Reaching C ~ 3 with optimized devices

M. Mitchell, D. Lake, P.E. Barclay, APL Photonics 4, 016101 (2019)

Hard mask optimization

Hard mask optimization

Diamond etch optimization

Probing surface roughness

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment

Matthew Borselli, Thomas J. Johnson, and Oskar Painter Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. borselli@caltech.edu

Probing surface roughness

Diamond microdisk cavities: optomechanics

Transduced thermal (kT) motion:

Measure GHz vibrations with fm/Hz^{1/2} sensitivity Room-T Q*f > 10^{13} (ambient conditions) Operating in resolved sideband regime Microsecond (µs) phonon lifetime

Mitchell et al. Optica (2016)

Optomechanics for information processing

Optomechanical pulse storage

Also see: work from Hailin Wang (Oregon), Sussman (NRC Ottawa)

Communications (2021)

Optomechanical spin control

Future directions

Currently: spin-phonon coupling is weak (~ 1 Hz)

Shift to SiV or other spins to realize a quantum interface (see Loncar)

Team

PDFs

Ghazal Haji salem Wei Zhang Joe Losby **Denis Sukachev (now at MIT/Harvard)**

Graduate Students

Elham Zohari Hamidreza Kaviani

David Lake (now at Caltech)

Matthew Mitchell (now at UBC)

Bishnu Behera

Prasoon Shandiliya

Blaine McLaughlin

Anustup Das

Xinyuan Ma

Alumni

Gustavo de Oliveira Luiz (moving to NanoFAB) Aaron Hryciw (now at NanoFAB) Behzad Khanaliloo (now at Lumerical) JP Hadden (now at Sussex) Harishankar Jayakumar (now at CCNY)

Alberta Innovates Technology Futures

Etch conditions: anisotropic etch

Sample	ICP [W]	RF[W]	Bias [V]	Etch Rate [nm/s]	Sidewall Angle [°]	Parameter Sweep
OG47	850	20	130	1.534	15.55	
OG46	850	40	190	1.636	6.509	
OG38	850	60	230	1.911	2.976	$RF-\alpha$
OG36	850	80	279	1.620	1.107	
OG37	850	100	311	1.759	0.636	
OG54	850	80	281	2.206	13.27	ICP
OG53	1000	90	286	2.454	4.063	
OG48	1150	100	291	3.225	6.952	
OG49	1300	110	293	4.062	8.994	
OG55	1000	100	304	2.685	3.242	DE B
OG56	1000	110	319	2.378	2.634	nr-p