Optica Webinar 05 May 2023

Nanoscale Petahertz Electronics for Science and Technology

P. Donald Keathley

Principal Research Scientist Quantum Nanostructures and Nanofabrication Group Research Laboratory of Electronics at MIT

Why do we want to capture subjects as they move in time?

To understand *how* they move.

Race horses and Jockeys cross the finishing line 1850

Rebecca and Brian de Bois-Guilbert. 1828

Harold Edgerton and His Camera

If we can measure precisely how <u>optical fields</u> oscillate in time, we can understand how <u>electrons</u>, holes, and ions move.

https://en.wikipedia.org/wiki/Dipole#/media/File:Electric_dipole_radiation.gif

Electronic Dynamics in Quantum Wells

Roskos, H. G. et al. Phys. Rev. Lett. 68, 2216-2219 (1992).

There's Plenty to Explore at Higher Frequencies!

- Exciton and charge-transfer dynamics important to photovoltaics/photosynthesis
- Dynamics behind extreme nonlinearities in molecules/solids
- Understand coherent control of chemical bonding/dissociation
- Applications in molecular sensing/analysis
- Field-resolved ultrafast dynamics of nanophotonics

Many signals of interest are often both **fast** and **weak**. Need:

- Sub- to few-fs response
- high sensitivity

Joseph, S., et al. J. Phys. Chem. Lett. 8, 5171-5176 (2017).

Wang, Z. et al. Nat Commun 8, 1686 (2017).

Our Path

1. optical-field-driven tunneling (speed)

Gallmann, L. et al. Structural Dynamics 4, 061502 (2017).

Ultrafast "Flash": HHG

Ultrafast "Flash": HHG

F. Krausz, M. Stockman, Nat. Photonics 8, 205 (2014). M. Schultze, *et al.*, *Nature* **493**, 75 (2013).

Ultrafast "Flash": HHG

Requires

- mJ-level lasers
- Multiple vacuum chambers
- Multiple people to operate

<u>Not</u> a viable route to compact, sensitive detection.

Top: Attosecond beamline, Polytechnico Milano.

Btm: Kim *et al.*, Nat. Phot., 7, 958-962 (2013)

Sampling Light-Waves with Tunnel-Ionization: TIPTOE

Sampling Light-Waves with Tunnel-Ionization: TIPTOE

Park, S. B. et al. Optica, OPTICA 5, 402-408 (2018).

rle

Our Path

1. optical-field-driven tunneling (speed)

+

2. plasmonic and nanophotonic enhancement (sensitivity)

Further reducing size and energy \rightarrow nano + atto

How can nanoscale structures help us?

- Field enhancement > 10x possible from nanoscale features
- Few-cycle pulse + nano field enhancement \rightarrow optical tunneling without damage!
- Tunneling time < cycle time \rightarrow field-sensitivity

- Hommelhoff, P. et al., Phys. Rev. Lett. 97, 247402 (2006).
- Kruger, M. et al., Nature 475, 78–81 (2011).
- Herink, G. et al., Nature 483, 190–193 (2012).

Tips on Chips for Petahertz-Scale Electronics

C. Karnetzky et al. Nature Communications 9 (2018) 1

M. R. Bionta et al. Nature Photonics 15 (2021) 456

Y. Yang et al., Nat. Comm. 11, 3407 (2020)

Putnam, W. P. et al.,

Nature Physics 13,

335-339 (2017)

25

FE

Rybka, T. et al., Nat Photon 10, 667–670 (2016)

It's looking more and more like electronics!

How to demonstrate optical tunneling: CEP response

- Science: investigate properties of optical field emission
- Technology
 - Stabilize optical frequency combs
 - Optical Clocks
 - Optical Ranging/GPS
 - Few-cycle field control for strong-field and attosecond science

Sola, I. J. et al. Nature Physics 2, 319 (2006)

Optical-Field Sensitive Emission From Nanostructures

Keathley, P. D. et al., Nat. Phys. 15, 1128–1133 (2019).

CEP-Sensitive Photocurrent

In-Situ Measurement of Plasmonic Near-Fields

M. R. Bionta, et al., Nat. Photonics 15, 456 (2021).

Time-domain measurement

rle

Comparison to incident laser pulse

In-Situ Measurement of Plasmonic Near-Fields

rle

Time-domain accounting for plasmonic response

rLe

Accounting for plasmon reshaping of spectrum/fields

Frequency-domain accounting for plasmonic response

Electronics vs. Optics

Taking Things Further

Further Improving Sensitivity

Control Over Polarization and Frequency Response

Control Over Polarization and Frequency Response

rLe

Waveguide Integration

Waveguide Integration

Team, Collaborators and Funding

Marco Turchetti

Dr. Mina Bionta

Felix Ritzkowsky

Prof. Karl Berggren

Dr. Yujia Yang

Matthew Yeung

Lu-Ting Chou

(National Yang-Ming Univ.,

Taiwan)

Dario Cattozzo Mor

Alberto Nardi

Not Pictured **Drew Buckley**

Prof. Franz Kärtner DESY, U. Hamburg Physics

BOSTON

UNIVERSITY

Prof. Luca Dal Negro

B.U. ECE

Prof. William Putnam UC Davis ECE

