New opportunities for soft X-ray spectroscopy with free-electron lasers.

Martin Beye

Hamburg 2.3.2023

HELMHOLTZ

Outline

- Introduction to free-electron lasers
- Soft X-ray spectroscopy with femtosecond resolution
- Towards non-linear X-ray spectroscopies

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Free-electron lasers

Large scale facilities

User access through proposals:

- typically twice a year
- free of charge for published research evaluated by international committees
- overbooking between 3- and 10-fold

From synchrotrons to free-electron lasers

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Coherent interaction among electrons tremendously increases photon number

Ullrich et al., Ann. Rev. Phys. Chem. 63, 635 (2012) Page 4

How an FEL works

High density of relativistic electrons in an undulator interacts with the self-emitted field

McNeil and Thompson, Nat. Phot. 4, 813 (2010)

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

- The undulators in an FEL act \bullet like an amplifier.
- For SASE (self-amplification \bullet of spontaneous emission), they amplify the random spontaneous emission.
- In effect, they amplify any lacksquaredensity modulation of the electron bunch at a wavelength within the amplifier bandwidth.
- Seeding needs to provide an electron bunch density modulation with Fourier components at the right wavelength.

DOI: 10.1038/NPH0

High gain harmonic generation (HGHG)

Externally seeded with an optical laser

DESY. New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Energy modulation per energy spread must be larger than harmonic number (reasonable up to 10).

Echo-enabled harmonic generation (EEHG) The way to get even higher harmonics, i.e. shorter wavelengths

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

FLASH overview (@ DESY, Hamburg, Germany)

High repetition rate free-electron laser with two undulator lines to generate XUV and soft X-ray pulses

FLASH today

- bursts repeated with 10Hz

Each experimental hall hosts:

- 2 open port beam lines (one monochromatic) in total ~5 facility operated end stations or user supplied
- 2 fixed endstations at dedicated beam lines
- 1 split-and-delay-unit at an open port

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

superconducting accelerator enables many thousand pulses per second operation in burst mode: up to 800µs RF filled with up to 800 electron pulses (1 MHz) • usually, we serve in total 5000 pulses per second for two beam lines

Outline

Introduction to free-electron lasers

- Soft X-ray spectroscopy with femtosecond resolution
- Towards non-linear X-ray spectroscopies

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Low energy excitations at active sites

To understand and control functionality

> Photochemistry / Ultrafast chemical dynamics: -Metal-to-Ligand charge transfer

Physical Chemistry Chemical Physics

ıme 12 | Number 19 | 21 May 2010 | Pages 4881–5172

Low energy excitations at active sites

To understand and control functionality

> Correlated materials: -Metal-to-Insulator Transitions -Superconductors -Magnetic switching -Ferroelectrics

> **Excitation spectrum** at the active site: Soft X-ray spectroscopy

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

> Photochemistry / Ultrafast chemical dynamics: Ligand charge transfer -Artificial photosynthesis -Solar fuels

Heterogeneous catalysis

Selectivity: Local electronic structure through specific core resonances

Core levels are element specific

Table 1-1. Electron binding energies, in electron volts, for the elements V to Ag in their natural forms.

Element	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	M ₂	M ₃	M ₄	M ₅	N ₁ 4s	N ₂ 4p _{1/2}	N ₃
						3p _{1/2}	3p _{3/2}	3d _{3/2}	$3d_{5/2}$			4p _{3/2}
23 V	5465	626.7†	519.8†	512.1†	66.3†	37.2†	37.2†					
24 Cr	5989	696.0†	583.8†	574.1†	74.1†	42.2†	42.2†					
25 Mn	6539	769.1†	649.9†	638.7†	82.3†	47.2†	47.2†					
26 Fe	7112	844.6†	719.9†	706.8†	91.3†	52.7†	52.7†					
27 Co	7709	925.1†	793.2†	778.1†	101.0†	58.9†	59.9†					
28 Ni	8333	1008.6†	870.0†	852.7†	110.8†	68.0†	66.2†					
29 Cu	8979	1096.7†	952.3†	932.7	122.5†	77.3†	75.1†					
30 Zn	9659	1196.2*	1044.9*	1021.8*	139.8*	91.4*	88.6*	10.2*	10.1*			
31 Ga	10367	1299.0*b	1143.2†	1116.4†	159.5†	103.5†	100.0†	18.7†	18.7†			
32 Ge	11103	1414.6*b	1248.1*b	1217.0*b	180.1*	124.9*	120.8*	29.8	29.2			
33 As	11867	1527.0*b	1359.1*b	1323.6*b	204.7*	146.2*	141.2*	41.7*	41.7*			
34 Se	12658	1652.0*b	1474.3*b	1433.9*b	229.6*	166.5*	160.7*	55.5*	54.6*			
35 Br	13474	1782*	1596*	1550*	257*	189*	182*	70*	69*			
36 Kr	14326	1921	1730.9*	1678.4*	292.8*	222.2*	214.4	95.0*	93.8*	27.5*	14.1*	14.1*
37 Rb	15200	2065	1864	1804	326.7*	248.7*	239.1*	113.0*	112*	30.5*	16.3*	15.3 *
38 Sr	16105	2216	2007	1940	358.7†	280.3†	270.0†	136.0†	134.2†	38.9†	21.3	20.1†
39 Y	17038	2373	2156	2080	392.0*b	310.6*	298.8*	157.7†	155.8†	43.8*	24.4*	23.1*

DESY. | New opportunities for soft **X**

Spectroscopy toolbox Different final states different probes

X-ray Photoelectron Spectroscopy (XPS)

 E_F

Auger Emission Spectroscopy (AES)

X-ray Absorption Spectroscopy (XAS)

NEXAFS **XANES EXAFS**

X-ray Emission Spectroscopy (XES)

RIXS

Resonant inelastic X-ray scattering (RIXS) Photon-in photon-out

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Ament et al, Rev Mod Phys 83, 705 (2011)

Surface science at LCLS

Partners from Sweden, Germany, USA

SLAC / Stanford University:

Frank Abild-Pedersen Toyli Anniyev Ryan Coffee Georgi L. Dakovski Tetsuo Katayama Sarp Kaya Jerry LaRue Mike P. Minitti Andreas Møgelhøj May L. Ng Anders R. Nilsson **Dennis Nordlund** Jens Nørskov Hirohito Ogasawara William F. Schlotter Jonas A. Sellberg Joshua J. Turner Hongliang Xin

DESY: Martin Beye Wilfried Wurth **Universität Hamburg:** Martina Dell'Angela Florian Hieke Giuseppe Mercurio Wilfried Wurth **Fritz-Haber Institut:** Martin Wolf **Helmholtz-Zentrum Berlin:** Alexander Föhlisch **Stockholm University:** Jörgen Gladh Henrik Öberg Henrik Öström

Lars Pettersson

Anders Nilsson

Activation of strongly bound O on Ru

Rate-limiting step, reduction of the bond strength (bonding-anti bonding splitting) directly observed

Beye et al., JPCL 7, 3647 (2016)

Transition State Region in CO Oxidation Summary

Ground State

Oxygen Activated

CO Vibrating

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Bonds Forming ("Transition State Region")

Branching:

Relaxation w/o Reaction

CO₂ Release

H. Öström, et al., Science 347, 978 (2015) Page 17

Outline

- Introduction to free-electron lasers
- Towards non-linear X-ray spectroscopies

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Soft X-ray spectroscopy with femtosecond resolution

Soft X-ray RIXS limitations Low yield, low acceptance

Fluorescence yield of 10⁻² to 10⁻³

Hubbell, J. H. et al. J Phys Chem Ref Data 23, 339 (1994)

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Isotropic Emission, but **Geometrical Spectrometer Acceptance** 10⁻⁵ to 10⁻⁴ of 4π

Impulsively stimulated RIXS @ LCLS **Broadband short SASE pulses on Co metal**

- D. Higley Z. Chen M. Beye M. Hantschmann A. H. Reid V. Mehta O. Hellwig G. L. Dakovski A. Mitra R. Y. Engel T. Maxwell Y. Ding
- S. Bonetti M. Bucher S. Carron T. Chase E. Jal R. Kukreja T. Liu A. Föhlisch H. A. Dürr W. F. Schlotter J. Stöhr

Higley et al., Comm. Phys. 5, 83 (2022)

Page 20

Concurrent processes

Auger cascade

Stimulated Emission

Core Excitation

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Auger Decay

Impulsively stimulated RIXS

Next to Auger damage, stimulated emission is observed

Wave-mixing as a coherent alternative to RIXS?

Similar excitations accessible, selection rules different, but coherent enhancement could be large

DESY. New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Beye et al., JPCM 31, 014003 (2019)

Wave-mixing as a coherent alternative to RIXS? Four-wave mixing (2 optical ± 1 XUV = 1 new XUV) on LiF Li K-edge resonance

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

Rottke et al., Sci. Adv. eabn5127 (2022)

THANK YOU FOR YOUR ATTENTION.

DESY. | New opportunities for soft X-ray spectroscopy with free-electron lasers | Martin Beye, 2.3.2023

