
Disordered Hyperuniform Materials and Their
Novel Optical Properties

Salvatore Torquato

Department of Chemistry,

Department of Physics,

Princeton Institute of Materials,

and Program in Applied & Computational Mathematics

Review article: S. Torquato, “Hyperuniform States of Matter,” Physics

Reports, 745, 1 (2018).

. – p. 1/32



OUTLINE

1. Brief Review of Hyperuniformity

2. Multihyperuniformity

3. Stealthy Hyperuniformity and Order

Across Length Scales

4. Novel Optical Properties

. – p. 2/32



Long-Range Order: Crystals and Quasicrystals

Multitude of distinguishable states of matter that break continuous translational/rotational

symmetries of a liquid differently from a solid crystal.
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Long-Range Order: Crystals and Quasicrystals

Multitude of distinguishable states of matter that break continuous translational/rotational

symmetries of a liquid differently from a solid crystal.

Crystal Quasicrystal

Crystals have both long-range periodic translational and orientational order.

Quasicrystals taught us how to generalize the concept of long-range order. They possess

long-range quasiperiodic translational order and long-range orientational order with prohibited

crystallographic symmetries. Shechtman et al. PRL (1984); Levine & Steinhardt, PRL (1984)

Hyperuniformity generalizes these established notions of long-range order.

Hyperuniformity also forces us to re-think what we mean by “disorder.”
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Qualitatively, What is Hyperuniformity?

A hyperuniform many-particle system is one in which large-scale density

fluctuations are greatly suppressed compared to those of typical disordered

systems (e.g., liquids).
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Qualitatively, What is Hyperuniformity?

A hyperuniform many-particle system is one in which large-scale density

fluctuations are greatly suppressed compared to those of typical disordered

systems (e.g., liquids).

All perfect crystals (periodic systems) and quasicrystals are hyperuniform.

Hyperuniformity provides a unified means of categorizing and characterizing

crystals, quasicrystals and special disordered systems. Thus, hyperuniformity

concept generalizes our traditional notions of long-range order.

Disordered hyperuniform many-particle systems can be regarded to be new

ideal states of matter in that they

1. behave more like crystals or quasicrystals in the way they suppress

large-scale density fluctuations, and yet are also like liquids and glasses,

since they are statistically isotropic structures with no Bragg peaks;

2. can exist as both as equilibrium and nonequilibrium phases;

3. come in quantum-mechanical and classical varieties;

4. and, are endowed with unique bulk physical properties.

Understanding such disordered states of matter requires new theoretical tools

and present experimental challenges.
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Large-Scale Density Fluctuations and Hyperuniformity

Torquato and Stillinger, Phys. Rev. E (2003)

Points in R
d can represent molecules of a material, stars in a galaxy, or trees

in a forest. Let Ω ⊂ R
d represent a spherical window of radius R.

σ2(R) ∼ Rd σ2(R) ∼ Rd−1 σ2(R) ∼ Rd−1

Local number variance: σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2
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Pair Statistics in Direct and Fourier Spaces
For particle systems in R

d at number density ρ , g2(r) is a nonnegative radial function that is

proportional to the probability density of pair distances r.

The nonnegative structure factor S(k) ≡ 1 + ρh̃(k) is obtained from the Fourier transform of

h(r) = g2(r) − 1, which we denote by h̃(k).
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Hidden Order on Large Length Scales

Which is the hyperuniform pattern?
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ENSEMBLE-AVERAGE FORMULATION

For a translationally invariant point process at number density ρ in R
d:

σ2(R) = 〈N(R)〉
h

1 + ρ

Z

Rd

h(r)α2(r; R)dr
i

α2(r; R)- scaled intersection volume of 2 windows of radius R separated by r

R
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For a certain class of systems and large R, we can show

σ2(R) = 2dφ
h
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where A and B are the “volume” and “surface-area” coefficients:

A = S(k = 0) = 1 + ρ

Z

Rd

h(r)dr, B = −c(d)

Z

Rd

h(r)rdr,

Hyperuniform: A = 0, B > 0 =⇒ Sum rule: ρ
R

Rd h(r)dr = −1

Hyposurfical: A > 0, B = 0

Degree of hyperuniformity for disordered systems: Ratio B/A - Larger

(smaller) is B/A, the larger (smaller) is the hyperuniformity scaling regime for σ2(R).

We’ll see that you can have other variance scalings between Rd−1 and Rd.
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Single-Configuration Formulation & Ground States

We showed

σ2(R) = 2dφ
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For large R, in the special case of hyperuniform systems,

σ2(R) = Λ(R)
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Quantifying Suppression of Density Fluctuations at Large Scales: 1D

For any d, averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

Z L

0

Λ(R)dR

Lower the surface-area coefficient Λ, greater the suppression of large-scale fluctuations in a

hyperuniform system.

The surface-area coefficient Λ for some crystal, quasicrystal and disordered 1D hyperuniform

point patterns (Torquato & Stillinger 2003).
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Pattern Λ

Integer Lattice 1/6 ≈ 0.166667

Step+Delta-Function g2 3/16 =0.1875

Fibonacci Chain∗ 0.2011

Step-Function g2 1/4 = 0.25

Randomized Lattice 1/3 ≈ 0.333333

∗Zachary & Torquato (2009)
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For any d, averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

Z L

0

Λ(R)dR

Lower the surface-area coefficient Λ, greater the suppression of large-scale fluctuations in a

hyperuniform system.

The surface-area coefficient Λ for some crystal, quasicrystal and disordered 1D hyperuniform

point patterns (Torquato & Stillinger 2003).

Pattern Λ

Integer Lattice 1/6 ≈ 0.166667

Step+Delta-Function g2 3/16 =0.1875

Fibonacci Chain∗ 0.2011

Step-Function g2 1/4 = 0.25

Randomized Lattice 1/3 ≈ 0.333333

∗Zachary & Torquato (2009)

More recent work on hyperuniformity of 1D quasicrystals: Ogŭz, Socolar, Steinhardt and Torquato

(2016).
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Quantifying Suppression of Density Fluctuations at Large Scales: 2D

The surface-area coefficient Λ for some crystal, quasicrystal

and disordered 2D hyperuniform point patterns (Torquato &

Stillinger 2003).

2D Pattern Λ

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling∗ 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

One-Component Plasma 1.12838

∗Zachary & Torquato (2009)

. – p. 11/32



Quantifying Suppression of Density Fluctuations at Large Scales: 2D

The surface-area coefficient Λ for some crystal, quasicrystal

and disordered 2D hyperuniform point patterns (Torquato &

Stillinger 2003).

2D Pattern Λ

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling∗ 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

One-Component Plasma 1.12838

∗Zachary & Torquato (2009)

More recent work on hyperuniformity of 2D quasicrystals: Lin,

Steinhardt and Torquato (2017).
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Quantifying Suppression of Density Fluctuations at Large Scales: 3D

The surface-area coefficient Λ for some crystal and disordered

3D hyperuniform point patterns (Torquato & Stillinger 2003).

Pattern Λ

BCC Lattice 1.24476

FCC Lattice 1.24552

HCP Lattice 1.24569

SC Lattice 1.28920

Diamond Lattice 1.41892

Wurtzite Lattice 1.42184

Damped-Oscillating g2 1.44837

Step+Delta-Function g2 1.52686

Step-Function g2 2.25

Carried out analogous calculations in high d (Zachary &

Torquato, 2009) - of importance in communications. Disordered

point patterns may win in high d (Torquato & Stillinger, 2006).

Minimizers of Λ and Epstein zeta function are directly related.
. – p. 12/32



General Hyperuniform Scaling Behaviors

Consider systems characterized by a power-law structure factor

S(k) ∼ |k|α, (|k| → 0)

For hyperuniform systems, α > 0, can prove number variance σ2(R) has following large-R

scalings (Zachary and Torquato, 2011):

σ2(R) ∼

8

>

>

<

>

>

:

Rd−1, α > 1 (CLASS I)

Rd−1 ln R, α = 1 (CLASS II)

Rd−α, 0 < α < 1 (CLASS III)
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Riemann zeros, eigenvalues of random matrices, fermionic systems, superfluid helium, maximally

random jammed packings, prime numbers.

Class III: σ2(R) ∼ Rd−α (0 < α < 1): Classical disordered ground states, nonequilibrium

phase transitions/random organization models.
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Class I: σ2(R) ∼ Rd−1: Crystals, quasicrystals, stealthy disordered ground states,

one-component plasmas, Laughlin’s “incompressible” quantum fluid, g2-invariant disordered

point processes, vortex structures in type-II superconductors.

Class II: σ2(R) ∼ Rd−1 ln(R): Quasicrystals, classical disordered ground states, nontrivial

Riemann zeros, eigenvalues of random matrices, fermionic systems, superfluid helium, maximally

random jammed packings, prime numbers.

Class III: σ2(R) ∼ Rd−α (0 < α < 1): Classical disordered ground states, nonequilibrium

phase transitions/random organization models.

General Nonhyperuniform Scaling Behaviors

σ2(R) ∼

8

<

:

Rd, α = 0 (typical nonhyperuniform)

Rd−α, −d < α < 0 (anti-hyperuniform).

Thus, can classify all translationally invariant states of matter according to their large-scale

density fluctuations.
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Hyperuniformity of Disordered Two-Phase Materials

Hyperuniformity concept was generalized to the case of heterogeneous

materials: phase volume fraction fluctuates within a spherical window of

radius R (Zachary and Torquato, J. Stat. Mech. 2009).

. – p. 14/32



Hyperuniformity of Disordered Two-Phase Materials

Hyperuniformity concept was generalized to the case of heterogeneous

materials: phase volume fraction fluctuates within a spherical window of

radius R (Zachary and Torquato, J. Stat. Mech. 2009).

For typical disordered media, volume-fraction variance σ2
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Hyperuniformity of Disordered Two-Phase Materials

Hyperuniformity concept was generalized to the case of heterogeneous

materials: phase volume fraction fluctuates within a spherical window of

radius R (Zachary and Torquato, J. Stat. Mech. 2009).

For typical disordered media, volume-fraction variance σ2

V
(R) for large R

goes to zero like R−d.

For hyperuniform disordered two-phase media, σ2

V
(R) goes to zero faster

than R−d, equivalent to following condition on spectral density χ̃
V
(k):

lim
|k|→0

χ̃
V
(k) = 0.

Interfacial-area fluctuations play an important role in static and surface-area

evolving structures. Here we define σ2

S
(R) and hyperuniformity condition is

(Torquato, PRE, 2016) lim
|k|→0

χ̃
S
(k) = 0.
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Other Generalizations of Hyperuniformity
Some generalizations (Torquato, PRE 2016):

Random scalar fields: Concentration and temperature fields in random media and turbulent

flows, laser speckle patterns, and temperature fluctuations associated with CMB.

Spinodal decomposition patterns

are hyperuniform: Ma & Torquato, PRE (2017)

Random vector/tensor fields: Random media (e.g., heat, current, electric, magnetic, velocity

and stress fields), turbulence, etc.

Structurally anisotropic materials: Many-particle systems and random media that are

statistically anisotropic, requiring generalization to directional hyperuniformity.
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Other Generalizations of Hyperuniformity
Some generalizations (Torquato, PRE 2016):

Random scalar fields: Concentration and temperature fields in random media and turbulent

flows, laser speckle patterns, and temperature fluctuations associated with CMB.

Spinodal decomposition patterns

are hyperuniform: Ma & Torquato, PRE (2017)

Random vector/tensor fields: Random media (e.g., heat, current, electric, magnetic, velocity

and stress fields), turbulence, etc.

Structurally anisotropic materials: Many-particle systems and random media that are

statistically anisotropic, requiring generalization to directional hyperuniformity.

Is there a many-particle system with following anisotropic scattering pattern?

Treatment of spin systems, both classical [Chertkov et al., PRB (2016)] and quantum-mechanical

[Crowley, Laumann & Gopalakrishnan, PRB (2019)]
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Examples of Disordered Hyperuniform Systems

Physical Examples

Disordered classical ground states: Uche et al. PRE (2004); Batten et al., PRE (2015)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0 (nonequilibrium states):

Donev et al. PRL (2005); Zachary et al. PRL (2011); Dreyfus et al., PRE (2015)

Fermionic point processes: S(k) ∼ k as k → 0 (ground states and/or positive temperature

equilibrium states): Torquato et al. J. Stat. Mech. (2008); Scardicchio et al., PRE, 2009

Charged Hard-Sphere Systems: Lomba et al. PRE (2017,2018); Chen et al. PCCP (2018)

Self-assembled bidisperse emulsions (nonequilibrium states): Ricouvier et al. PRL (2017).

Random organization (nonequilibrium states): Corté et al. Nat. Phys. (2008); Hexner et al. PRL

(2015); Dreyfus et. al. PRL (2015); Tjhung et al. PRL (2015); Ma et al. PRE (2019)

Vortex pinning and states in superconductors: Reichhardt et al. PRB (2017)

“Perfect” glasses (nonequilibrium states): Zhang et al. Sci. Rep. (2016)
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Random organization (nonequilibrium states): Corté et al. Nat. Phys. (2008); Hexner et al. PRL

(2015); Dreyfus et. al. PRL (2015); Tjhung et al. PRL (2015); Ma et al. PRE (2019)

Vortex pinning and states in superconductors: Reichhardt et al. PRB (2017)

“Perfect” glasses (nonequilibrium states): Zhang et al. Sci. Rep. (2016)

Natural Disordered Hyperuniform Systems
Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Balasubramanian et al. PNAS (2015)
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Fermionic point processes: S(k) ∼ k as k → 0 (ground states and/or positive temperature

equilibrium states): Torquato et al. J. Stat. Mech. (2008); Scardicchio et al., PRE, 2009

Charged Hard-Sphere Systems: Lomba et al. PRE (2017,2018); Chen et al. PCCP (2018)

Self-assembled bidisperse emulsions (nonequilibrium states): Ricouvier et al. PRL (2017).

Random organization (nonequilibrium states): Corté et al. Nat. Phys. (2008); Hexner et al. PRL

(2015); Dreyfus et. al. PRL (2015); Tjhung et al. PRL (2015); Ma et al. PRE (2019)

Vortex pinning and states in superconductors: Reichhardt et al. PRB (2017)

“Perfect” glasses (nonequilibrium states): Zhang et al. Sci. Rep. (2016)

Natural Disordered Hyperuniform Systems
Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Balasubramanian et al. PNAS (2015)

Nearly Hyperuniform Disordered Systems
Amorphous Silicon (nonequilibrium states): Henja et al. PRB (2013)

Structural Glasses (nonequilibrium states): Marcotte et al. (2013)

Polymers (equilibrium states): Xu et al. Macromolecules (2016); Chremos et al. Ann.. Phys. (2017)

Amorphous Ices (nonequilibrium states): Martelli et al. PRL (2017)
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Randomly Perturbed Crystals and Their Order/Disorder

Klatt, Kim and Torquato, PRE (2018)

A common way to introduce disorder into an otherwise ordered system such as a perfect crystal

or quasicrystal is to randomly perturb the particle positions of that system.

The structure factor S(k) for a uniformly randomized lattice (URL) is

S(k) = 1 − |f̃(k)|2 + |f̃(k)|2SL(k),

where SL(k) - structure factor of unperturbed lattice L and f̃ is FT of displacement PDF f .

For most a, Bragg peaks are present, which is far from disordered!

Certain a make second term vanish, i.e., Bragg peaks are cloaked!, yielding S(k) ∼ k2 (class I).

. – p. 17/32



Randomly Perturbed Crystals and Their Order/Disorder

Klatt, Kim and Torquato, PRE (2018)

A common way to introduce disorder into an otherwise ordered system such as a perfect crystal

or quasicrystal is to randomly perturb the particle positions of that system.

The structure factor S(k) for a uniformly randomized lattice (URL) is

S(k) = 1 − |f̃(k)|2 + |f̃(k)|2SL(k),

where SL(k) - structure factor of unperturbed lattice L and f̃ is FT of displacement PDF f .

For most a, Bragg peaks are present, which is far from disordered!

Certain a make second term vanish, i.e., Bragg peaks are cloaked!, yielding S(k) ∼ k2 (class I).

Uncloaked Uncloaked Cloaked Uncloaked

-10

0

10

-10 0 10

k
y

kx

S(k)

0

5

10

15

20

-10

0

10

-10 0 10

k
y

kx

S(k)

0

5

10

15

20

-10

0

10

-10 0 10

k
y

kx

S(k)

0

5

10

15

20

-10

0

10

-10 0 10

k
y

kx

S(k)

0

5

10

15

20

(a) 0 2 (b) 0 4 (c) 1 0 (d) 1 2
. – p. 17/32



Hyperuniformity and Prototypical Glasses

Conjecture: All strictly jammed saturated sphere packings are hyperuniform

(Torquato & Stillinger, 2003).
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Hyperuniformity and Prototypical Glasses

Conjecture: All strictly jammed saturated sphere packings are hyperuniform

(Torquato & Stillinger, 2003).

A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it

is maximally disordered but perfectly rigid (infinite elastic moduli).

Such packings of identical spheres have been shown to be hyperuniform with

quasi-long-range (QLR) pair correlations in which h(r) decays as −1/r4

(Donev, Stillinger & Torquato, PRL, 2005).
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This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast. Contradicts frozen-liquid picture of a glass.
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A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it

is maximally disordered but perfectly rigid (infinite elastic moduli).

Such packings of identical spheres have been shown to be hyperuniform with

quasi-long-range (QLR) pair correlations in which h(r) decays as −1/r4
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This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast. Contradicts frozen-liquid picture of a glass.

Apparently, hyperuniform QLR correlations with decay −1/rd+1 are a

universal feature of general MRJ packings in R
d.

Zachary, Jiao and Torquato, PRL (2011): ellipsoids, superballs, sphere mixtures

Berthier et al., PRL (2011); Kurita and Weeks, PRE (2011) : sphere mixtures

Jiao and Torquato, PRE (2011): polyhedra
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Multihyperuniformity: In the Eye of a Chicken
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Multihyperuniformity: In the Eye of a Chicken

Disordered mosaics of both total population and individual cone types are effectively

hyperuniform, which had been never observed in any system before. We call this

multi-hyperuniformity (Jiao, Corbo & Torquato, PRE 2014).
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Multihyperuniformity: In the Eye of a Chicken

Disordered mosaics of both total population and individual cone types are effectively

hyperuniform, which had been never observed in any system before. We call this

multi-hyperuniformity (Jiao, Corbo & Torquato, PRE 2014).

Recently showed that multihyperuniformity can be rigorously achieved via hard-disk plasmas

(Lomba, Weis and Torquato, PRE 2018). . – p. 19/32



Classical Disordered “Stealthy" Hyperuniform Ground States

Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Consider N particles with configuration rN in a flat torus T with a pair potential v(r) that is

bounded with Fourier transform ṽ(k). The total potential energy is

ΦN (rN ) =
X

i<j

v(rij) =
N

2|Ω|

X

k

ṽ(k)S(k) + constant
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Classical Disordered “Stealthy" Hyperuniform Ground States

Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Consider N particles with configuration rN in a flat torus T with a pair potential v(r) that is

bounded with Fourier transform ṽ(k). The total potential energy is

ΦN (rN ) =
X

i<j

v(rij) =
N

2|Ω|

X

k

ṽ(k)S(k) + constant

For ṽ(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, finding configurations in which S(k) is

constrained to be zero where ṽ(k) has support is equivalent to globally minimizing Φ(rN ).
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These exotic class I hyperuniform ground states are called “stealthy” and when disordered

are highly degenerate - classical analogs of quantum spin liquids.

Direct-space potentials are long-ranged, reminiscent of Friedel oscillations of the electron

density in a variety of systems.
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These exotic class I hyperuniform ground states are called “stealthy” and when disordered

are highly degenerate - classical analogs of quantum spin liquids.

Direct-space potentials are long-ranged, reminiscent of Friedel oscillations of the electron

density in a variety of systems.

Stealthy patterns can be tuned by varying size of the “exclusion region”, measured by parameter

χ: ratio of # of constrained degrees of freedom to the total # of degrees of freedom, d(N − 1).
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Disordered Stealthy Hyperuniform Ground States
Stealthy systems have hybrid crystal-liquid nature.

Crystal Stealthy
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Disordered Stealthy Hyperuniform Ground States
Stealthy systems have hybrid crystal-liquid nature.

Crystal Stealthy

A statistical-mechanical theory for stealthy ground states is nontrivial because dimensionality of

the configuration space decreases with χ. Such a theory for the thermodynamics and structure

has been proposed [Torquato, Zhang and Stillinger, PRX (2015)].
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Disordered Stealthy Hyperuniform Ground States
Stealthy systems have hybrid crystal-liquid nature.

Crystal Stealthy

A statistical-mechanical theory for stealthy ground states is nontrivial because dimensionality of

the configuration space decreases with χ. Such a theory for the thermodynamics and structure

has been proposed [Torquato, Zhang and Stillinger, PRX (2015)].

For 0 ≤ χ < 0.5, 2D and 3D ground states are highly degenerate, disordered and isotropic.

(a)   χ= 0.04167 (b)  χ = 0.41071

As χ increases, short-range order increases; see animations.

We proposed new metric to quantify order across length scales:

τ =
1

(2π)dDd

Z

|k|≤K

[S(k) − 1]2dk,

As χ increases above 1/2, the system at T = 0 undergoes a transition to ordered phases.

max
(

min
)

Disordered Crystal

* *

Entr decreases increases.
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Disordered Stealthy Hyperuniform Ground States and Novel Materials

Florescu, Torquato and Steinhardt, PNAS (2009)

About 1.5 decades ago, it was believed that Bragg scattering was required to achieve cellular

solids with complete photonic band gaps (PBGs).
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Florescu, Torquato and Steinhardt, PNAS (2009)

About 1.5 decades ago, it was believed that Bragg scattering was required to achieve cellular

solids with complete photonic band gaps (PBGs).

Mapped disordered, isotropic “stealthy” ground-state configurations into disordered 2D dielectric

trivalent networks via a Delaunnay centroidal tessellation.
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Disordered Stealthy Hyperuniform Ground States and Novel Materials

Florescu, Torquato and Steinhardt, PNAS (2009)

About 1.5 decades ago, it was believed that Bragg scattering was required to achieve cellular

solids with complete photonic band gaps (PBGs).

Mapped disordered, isotropic “stealthy” ground-state configurations into disordered 2D dielectric

trivalent networks via a Delaunnay centroidal tessellation.

This enabled us to computationally design photonic materials with large complete (both

polarizations and all directions) band gaps.

χ = 0.1, 0.2, 0.3, 0.4, 0.5

Can now compute τ order metric = 0.02, 0.04, 0.13, 0.42, 2.72 (Note: τ → ∞ for crystal)
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Disordered Stealthy Hyperuniform Ground States and Novel Materials
These network material designs have been fabricated and tested for microwave regime: Man,

Florescu et. al., PNAS (2013).

Because band gaps are isotropic, such photonic materials offer advantages over photonic

crystals (e.g., free-form waveguides).
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Disordered Stealthy Hyperuniform Ground States and Novel Materials
These network material designs have been fabricated and tested for microwave regime: Man,

Florescu et. al., PNAS (2013).

Because band gaps are isotropic, such photonic materials offer advantages over photonic

crystals (e.g., free-form waveguides).

Subsequent Wave Propagation Studies

High-density transparent 2D stealthy hyperuniform (SH) materials: Leseur et al. Optica (2016).

For TM polarization, 2D SH materials show a rich “phase diagram” as a function of χ -

transparency, diffusive, PBG and localization regimes: Froufe-Pérez et al. PNAS (2017).

Recent analogous 3D study showing weak-localization and transparency regimes depending on

χ: Sgrignuoli, Torquato and Dal Negro, PRB (2021).

2D SH materials are nearly optimal wave absorbers: Bigourdan et al. Opt. Exp. (2018).

SH composite lens can dramatically reduce back scattering relative to its periodic counterparts:

Zhang et al. APL (2019).

Predictive nonlocal theory of effective dynamic dielectric constant across the first 3 dimensions

for general composite microstructures, including SH materials: Torquato and Kim, PRX (2020).

Over 65% sunlight absorption in a 1 µm Si Slab with SH texture: Tavakoli et al. ACS Phot. (2022)
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Disordered Stealthy Hyperuniform Materials with Optimal Transport/Elastic Properties

Optimal Effective Conductivity & Elastic Moduli in 2D High-χ Stealthy Networks

Chen & Torquato, Multifunctional Materials (2018)

Optimal Effective Diffusivity in Decorated 3D Stealthy Patterns

Zhang, Stillinger& Torquato, J. Chem. Phys. (2016)
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WHY DO DISORDERED STEALTHY HYPERUNIFORM

MATERIALS WITH SUFFICIENTLY HIGH χ VALUES

YIELD DESIRABLE PHYSICAL PROPERTIES?
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WHY DO DISORDERED STEALTHY HYPERUNIFORM

MATERIALS WITH SUFFICIENTLY HIGH χ VALUES

YIELD DESIRABLE PHYSICAL PROPERTIES?

They are rotationally invariant disordered materials that maximally

suppress density fluctuations from intermediate to infinite wave-

lengths and the “bounded-hole” property, i.e., holes of arbitrarily

large size are prohibited in thermodynamic limit (Torquato, Physics

Reports 2017).

We derived (Zhang, Stillinger & Torquato, Soft Matter 2017) that the maximum

hole size Rmax is bounded from above for any d by

Rmax ≤
(d + 1)π

2K

This bound was proved by Ghosh and Lebowitz, Comm. Math. Phys. (2018)
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Targeted Spectra S(k) ∼ kα

Can target scaling of structure factor S(k) ∼ kα for k → 0 using collective-coordinate

optimization procedure.
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k
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k6

Wavenumber k

Stru
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tor S(k)

Configurations are ground states of many-particle systems with two-, three- and four-body

interactions (Uche, Stillinger & Torquato, Phys. Rev. E 2006).

Figure 1: One of them is for S(k) ∼ k6 and other for S(k) ∼ k.
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Configurations are ground states of many-particle systems with two-, three- and four-body

interactions (Uche, Stillinger & Torquato, Phys. Rev. E 2006).

Figure 1: One of them is for S(k) ∼ k6 and other for S(k) ∼ k.

This procedure leads to the perfect glass paradigm, corresponding to disordered hyperuniform

ground states mechanically stable and eliminate the possibilities of crystalline and

quasicrystalline phases from the ground-state manifold.
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Multifunctional Composites for Elastic and Electromagnetic Wave Propagation

Kim and Torquato, Proc. Nat. Acad. Sci. (2020)
Kim and Torquato, New Journal of Physics (2020)
Torquato and Kim, Physical Review X (2021)

Derived exact expansions for effective dynamic elastic and electromagnetic wave characteristics

of composites of arbitrary microstructures that apply well beyond the quasistatic

(long-wavelength) regime.

Extracted accurate formulas for effective dynamic dielectric constant & elastic moduli, each which

depends on microstructure via spectral density χ̃V (k).

. – p. 27/32



Multifunctional Composites for Elastic and Electromagnetic Wave Propagation

Kim and Torquato, Proc. Nat. Acad. Sci. (2020)
Kim and Torquato, New Journal of Physics (2020)
Torquato and Kim, Physical Review X (2021)

Derived exact expansions for effective dynamic elastic and electromagnetic wave characteristics

of composites of arbitrary microstructures that apply well beyond the quasistatic

(long-wavelength) regime.

Extracted accurate formulas for effective dynamic dielectric constant & elastic moduli, each which

depends on microstructure via spectral density χ̃V (k).

By eliminating this common microstructural quantity, found “cross-property relations” that link

effective elastic and electromagnetic wave characteristics to one another, facilitating

multifunctional design.

Left panel: Both elastic and electromagnetic waves can be attenuated due to scattering.

Right panel: Composite attenuates elastic waves but is transparent to electromagnetic waves.

Showed that composites with disordered stealthy microstructures exhibit novel wave

characteristics, e.g., low-pass or narrow-band-pass filters that transmit or absorb waves

“isotropically” for a range of wavenumbers.
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Do PBGs of Disordered Dielectric Networks Persist in Thermodynamic Limit?

CONJECTURE: High-χ stealthy hyperuniformity is a necessary condition for an isotropic disordered net-

work to have a complete photonic band gap in the thermodynamic limit. (Torquato, Physics Reports 2017)

This conjecture is based on

Structural “uniformity” from very large to intermediate length scales: Batten, Stillinger& Torquato,

J. Appl. Phys. (2008)

High-χ opens up complete PBGs for finite systems: Florescu, Torquato & Steinhardt, PNAS (2009)

“Bounded-hole” property in thermodynamic limit: Zhang, Stillinger& Torquato, Soft Matter (2017)

. – p. 28/32



Do PBGs of Disordered Dielectric Networks Persist in Thermodynamic Limit?

CONJECTURE: High-χ stealthy hyperuniformity is a necessary condition for an isotropic disordered net-

work to have a complete photonic band gap in the thermodynamic limit. (Torquato, Physics Reports 2017)

This conjecture is based on

Structural “uniformity” from very large to intermediate length scales: Batten, Stillinger& Torquato,

J. Appl. Phys. (2008)

High-χ opens up complete PBGs for finite systems: Florescu, Torquato & Steinhardt, PNAS (2009)

“Bounded-hole” property in thermodynamic limit: Zhang, Stillinger& Torquato, Soft Matter (2017)

Testing the Conjecture

Klatt, Steinhardt & Torquato, submitted to the PNAS

We use a two-stage ensemble approach to study the formation of complete PBGs for a sequence

of increasingly large systems spanning a broad range of 2D photonic network solids with varying

degrees of local and global order, including hyperuniform and nonhyperuniform types.

Except for high-χ stealthy hyperuniform cases, we discover that the gap in the density of states

exhibits exponential tails and the apparent PBGs rapidly close as the system size increases for

nearly all disordered networks considered.

PBGs for high-χ stealthy hyperuniform cases remain open and the band tails exhibit a desirable

power-law scaling reminiscent of the PBG behavior of photonic crystals in thermodynamic limit.
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Two-Stage Density of States Ensemble Approach

BA

Independent
renditions

A
Exponential tails

B
Power-law tails
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Network Models
Equiluminous Random Sequential Addition Stealthy Nonhyperuniform

Nonhyperuniform Nonhyperuniform Nonhyperuniform
Nonstealthy Nonstealthy Stealthy
Unbounded holes Bounded holes Unbounded holes

Perfect Glass Low-χ Stealthy Hyperuniform High-χ Stealthy Hyperuniform

Hyperuniform Hyperuniform Hyperuniform
Nonstealthy Stealthy Stealthy
Bounded holes Bounded holes Bounded holes
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Which Networks Survive? Confirmation of Conjecture
Equiluminous Random Sequential Addition Stealthy Nonhyperuniform

Nonhyperuniform Nonhyperuniform Nonhyperuniform
Nonstealthy Nonstealthy Stealthy
Unbounded holes Bounded holes Unbounded holes

Perfect Glass Low-χ Stealthy Hyperuniform high-χ Stealthy Hyperuniform

Hyperuniform Hyperuniform Hyperuniform
Nonstealthy Stealthy Stealthy
Bounded holes Bounded holes Bounded holes
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CONCLUSIONS
Hyperuniformity provides a unified means of categorizing and characterizing crystals,

quasicrystals and special correlated disordered systems.

Hyperuniformity concept brings to the fore the importance of long-wavelength correlations in

non-hyperuniform systems (liquids and glasses) and forces us to re-think the meaning of

randomness across length scales.

Disordered hyperuniform materials are ideal states of amorphous matter that often are endowed

with novel bulk properties that we are only beginning to discover.

We can now produce disordered hyperuniform materials with designed spectra.

Hyperuniform scalar and vector fields as well as directional hyperuniform materials represent

exciting new extensions.

Hyperuniformity has become a powerful concept that connects a variety of seemingly unrelated

systems that arise in physics, chemistry, materials science, mathematics, and biology.
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