

Semiconductor metasurfaces in strong optical fields

Maxim Shcherbakov

Department of Electrical Engineering and Computer Science University of California, Irvine

Sponsors and collaborators:

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

Agency for Science, Technology

AUSTRALIAN National University

Optica Webinar, January 11, 2023

Metamaterials: tailored spatial response

UCI Samueli School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

Polarization and chirality

Pendry, Lakhtakia, X Zhang, Zheludev, He, Wegener, Pertsch, Soukoulis, Ozbay, HT Chen, S Zhang

Metasurface-based devices

Capasso, Alu, Yu, Kivshar, Shalaev, Boltasseva, Brongersma, Fan, Maier, Belov, Simovski, Zentgraf, Tsai, Bozhevolnyi, Neshev, Cai, Faraon, Staude, Brener, many others

Metamaterials: tailored nonlinear and spatio-temporal response

 $\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$

Metamaterials: tailored nonlinear and spatio-temporal response

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \sum \chi^{(n)}(\mathbf{r}) \mathbf{E}^n(\mathbf{r}) \qquad \mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

Nonlinear metamaterials

Nano Letters **14**, 6488 (2014) ACS Photonics **2**, 578 (2015) Nano Letters **15**, 6985 (2015) Nano Letters **16**, 4857 (2016) Nature Communications **8**, 17 (2017) Nature Communications **10**, 1345 (2019)

Metamaterials: tailored nonlinear and spatio-temporal response

UCI Samueli School of Engineering

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \sum \chi^{(n)}(\mathbf{r}) \mathbf{E}^{n}(\mathbf{r})$$

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r}) \qquad \mathbf{P}(\mathbf{r},t) = \varepsilon_0 \int d\mathbf{r}' \int dt' \,\chi(\mathbf{r},t,\mathbf{r}',t') \mathbf{E}(\mathbf{r}-\mathbf{r}',t-t')$$

Nonlinear metamaterials

Nano Letters **14**, 6488 (2014) ACS Photonics **2**, 578 (2015) Nano Letters **15**, 6985 (2015) Nano Letters **16**, 4857 (2016) Nature Communications **8**, 17 (2017) Nature Communications **10**, 1345 (2019)

Time-variant metamaterials

Nature Communications **10**, 1345 (2019) Optica (Memorandum) **6**, 1441 (2019) Physical Review A **100**, 063847 (2019) Nano Letters **20**, 7052 (2020) APL Materials **9**, 060701 (2021)

4th Generation (2015-future): Dynamic Metamaterials – SPACETIME Science & Technology

2nd Generation (1850-1995): Artificial Dielectrics – Electromagnetics Engineering

> 3rd Generation (1995-2015): Modern Metamaterials – New Physics

1st Generation (0-1850): Ancient Composites – Empirical Fabrication

Caloz and Deck-Leger, IEEE Trans Ant Propag 68, 1569 (2020)

Tretyakov, Boyd, Pendry, Engheta, Alu, Segev, Shadrivov, Shvets, Huidobro, Boltasseva, Shalaev, Brongersma, Kinsey, Halevi, Khurgin, Caglayan, Faccio, Nassar, Narimanov, Monticone, Sapienza, Fleury, Rodriguez, Lurie, Ramezani, Ramaccia many others

Experiments in time-variant metasurfaces Nano Letters 20, 7052 (2020) Nature Communications 10, 1345 (2019)

Nonlinear optics in nanostructures

UCI Samueli School of Engineering

Gustav Mie (1869 – 1957)

Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles Wiley Inter-Science, 1998.

|**E**|² maps (1) Magnetic dipolar (2) Electric dipolar -0 EM energy density (0.1 nJ/m emperature Amb (22°C) Hot 0

Khattak et al., PNAS **116**, 4000 (2019)

$$\tilde{P} = \chi^{(1)}\tilde{E}(t) + \chi^{(2)}\tilde{E}^2(t) + \chi^{(3)}\tilde{E}^3(t) + \dots$$
$$\tilde{E}(t) \propto e^{i\omega t} \qquad \propto e^{2i\omega t} \qquad \propto e^{3i\omega t}$$

Outline

• Strong fields: high harmonics generation

• Very strong fields: laser damage and nanomachining

UCI Samueli

School of Engineering

High harmonic generation

UCI Samueli School of Engineering

© Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD

Recombination

XUV sources for photolithography

ເກາຍເ

Pushing the resolution limits

Article

Laser picoscopy of valence electrons in solids

https://doi.org/10.1038/s41586-020-2429-z H. Lakhotia^{12,4}, H. Y. Kim^{12,4}, M. Zhan¹², S. Hu³, S. Meng³ & E. Goulielmakis¹²

HHG in nanostructures

HHG

75 nm

Nanostructured solids are natural candidates for HHG

- No phase matching issues
- Enhanced local fie

symmetry

Hard to access strong fields

Liu et al., Nature Physics 14, 1006–1010 (2018)

а

Yang et al., *Nature Physics* **15**, 1022–1026 (2019)

GaP — material of choice

- Noncenstrosymmetric
- Good tradeoff between E_{bg} and refractive index

Fabrication — Arseniy Kuznetsov's group, A*Star (Singapore)

HHG measurements

UCI Samueli School of Engineering

Single-shot HHG

Conversion efficiencies

Material	Harmonic order	Conversion efficiency	Efficiency per 1 µm thickness
GaP metasurface	5 (SP)	1.4×10^{-6}	3.5×10^{-6}
[this work]	7 (MP)	2×10^{-9}	5×10^{-9}
ZnO [8]	5	3×10^{-5}	10 ⁻⁷
	7	6×10^{-6}	2×10^{-8}
Periodically poled	5	10 ⁻²	4×10^{-7}
LiNbO ₃ [9]	7	10 ⁻²	4×10^{-7}
Si metasurface [10]	5	5×10^{-9}	2.2×10^{-8}
ENZ material [11]	5	10 ⁻⁸	1.3×10^{-7}
	7	10 ⁻¹⁰	1.3×10^{-9}

Shcherbakov et al., Nature communications **12**, 4185 (2021)

Samples: Free-standing membrane SiC metasurface Daniil Lukin, Jelena Vuckovic

Pulse train = damage!

Measurements: Shvets group, Fishman group, Shcherbakov group

Outline

• Strong fields: high harmonics generation

• Very strong fields: laser damage and nanomachining

UCI Samueli

School of Engineering

Laser Nanomachining

UCI Samueli School of Engineering

Joglekar et al., PNAS 101 5856 (2003)

Multi-pulse

Shah et al., *Optics Express* **14**, 12546 (2006)

Abere et al., Journal of Applied Physics 126, 143102 (2019)

|**E**|² maps (1) Magnetic dipolar

(2) Electric dipolar

Khattak et al., PNAS 116, 4000 (2019)

Resonators for deep-subwavelength machining

UCI Samueli School of Engineering

Methodology

Variations in pulse <u>energy</u>, <u>number</u> and <u>polarization</u>

Damage Type 1: Single-pulse Above Threshold

number of shots

Damage Type 2: Sub-threshold "Trenching"

UCI Samueli School of Engineering

10 shots

20 shots

30 shots

Trench control by polarization

Trench control by intensity

40 shots

50 shots

100 shots

UCI Samueli School of Engineering

Particle-in-cell simulations

Particle-in-cell simulations

Trench parameters: Length ~1.5 μ m, Width at bottom ~50 nm, Depth = 600 nm

Strong fields + 2D materials

Great outlook to control elementary excitations in low-dimensional materials

Outline

• Strong fields: high harmonics generation

 Very strong fields: laser damage and nanomachining

Nature Communications **12**, 4185 (2021) APL Materials **9**, 060701 (2021) Advanced Optical Materials **9**, 2100240 (2021)

Acknowledgements

Shcherbakov Lab, Summer 2022

Sponsors

Young Faculty Award

Sлмsung

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

Collaborators

Sandia National Laboratories

Science and Technoloay Facilit

Agency for Science, Technology and Research

Thank you to collaborators:

Shvets group (Cornell), Brener group (Sandia), Chowdhury group (Ohio State) Vuckovic group (Stanford), Kuznetsov group (A*Star Singapore)