EPFL Topological scattering: from graphs to networks

Romain Fleury Assistant Professor Laboratory of Wave Engineering EPFL

May 18, 2023

École polytechnique fédérale de Lausanne

EPFL EPFL at glance

366 Professors

***6'400** Employees (incl. Phd)

Run Run and 🛃 Advance Run and

are 🔻 🙀 Go To 🔻 Comment 🐒 🗽 📳

Active wave systems

Wave-based Neuromorphic computing, Nature Communications (2022) arXiv 2304.11042 (2023)

Active sound control Nature Physics (2018) Phys. Rev. Applied (2019)

EPFL Team and collaborators

Ph.D. students: Zhe Zhang, Qialu Chen, Aleksi Bossart, Rongrong Xiang, Mathieu Padlewski, Ali Momeni, Tinggui Chen. Postdocs: Matthieu Malléjac, Janez Rus, Maliheh Khatibi, Benjamin Apffel

Romain Fleury

Zhe Zhang, Ph.D. 2019-now

Pierre Delplace, CNRS ENS de Lyon (France)

HASLERSTIFTUNG

Introduction to topology

Topological scattering

From graphs to topological networks

Conclusion and perspectives

EPFL What is topology?

6

study of topological equivalences

described by topological invariants

EPFL Topology garantees some properties

 $2(1-g) = \sum v$

EPFL Example in electromagnetism

cannot be avoided ! =no monopolar radiation

EPFL Example in electrostatics

EPFL Periodic structures and topological charges

EPFL Topological edge modes

right hand drive country

EPFL Application to robust scattering?

EPFL Topologically robust scattering poles

Zangeneh, Fleury, Nature Communications 10, 2058 (2019); Phys. Rev. Lett. 122, 014301 (2019); Advanced Materials 32, 2001034 (2020); Optics Letters 45, 5966 (2020); Phys. Rev. B 101, 024101 (2019)

Romain Fleury

EPFL Topological Fano resonance

Zangeneh, Fleury, Phys. Rev. Lett. 122, 014301 (2019)

EPFL 2D topological insulators

Nat. Comm. 6, 8260 (2015)

Introduction to topology

Topological scattering

From graphs to topological networks

Conclusion

Homotopy classes characterized by the winding number of the map = homotopy invariant

EPFL Winding number

EPFL The winding number of the map

$$\vec{f} \times \frac{d\vec{f}}{d\varphi}$$
. \vec{e}_z Orbital moment, do I go right or left ?

Winding number

Proof:
$$\vec{f} = \|\vec{f}\| \begin{pmatrix} \cos\theta(\varphi) \\ \sin\theta(\varphi) \end{pmatrix} \implies v(f) = \frac{1}{2\pi} \oint_0^{2\pi} d\theta \in \mathbb{Z}$$

(v = 0 here)

19

Romain Fleury

EPFL More practical definition

Winding number: $\operatorname{sgn}\left(\vec{f} \times \frac{d\vec{f}}{d\varphi}\right) \cdot \vec{e}_{z}$ $v(f) = \sum$ φ_i^0 such that $\operatorname{Arg}(f(\varphi_i^0)) = \theta_0$

v = -1 + 1 = 0

EPFL **Generalization : the degree of a map** A,B orientable Target space B A,B: S^1 , S^2 , T^2 , etc Base space A $\dim A = \dim B$ $\deg f = \sum_{\alpha} \operatorname{sgn} \det \left(\frac{\partial \theta_{\beta}}{\partial \varphi_{\alpha}} \right)_{\beta}$

21

Romain Fleury

Ex: The winding number $v(f) = \deg f$ where f is a map from S^1 to S^1

$$\prod_{1} S^{1} = \mathbb{Z} \qquad \text{Homotopy group from } S^{1} \text{ to } S^{1}$$

EPFL Homotopy groups from Sⁿ to S^m

Ex: $\prod_3 S^2 = \mathbb{Z}$, Hopf insulators $\prod_{10} S^3 = \mathbb{Z}_{15}$...

Source: Wikipedia, "homotopy groups of spheres"

EPFL Application to 1D topological insulators

Coupled harmonic oscillators equations + Bloch theorem \rightarrow Tight-binding <u>Hamiltonian</u> describing the chain

$$H_{TB}(k_B) = \begin{bmatrix} \omega_0 & K_{tot} \\ \omega_0 & K + Je^{-jk_BA} \\ K + Je^{jk_BA} & \omega_0 \\ K_{tot}^* & \text{Resonance 2} \end{bmatrix}$$

EPFL Before defining topology - Things to keep in mind Romain Fleury 1)The Bloch wave number lives on a circle : $k_B \in \left[-\frac{\pi}{A}, \frac{\pi}{A}\right]$ $k_B = \pm \frac{\pi}{A}$ 2) The Hamiltonian lives in the space of 2 by 2 Hermitian matrices $H_{TB}(k_B) = d_0 \boldsymbol{\sigma}_0 + d_x(k_B) \boldsymbol{\sigma}_x + d_y(k_B) \boldsymbol{\sigma}_y + d_z(k_B) \boldsymbol{\sigma}_z$ 3) The eigenvalues of the Hamiltonian give the two frequency bands $\omega_{\pm} = d_0 \pm \left| \vec{d}(k_B) \right|$ $d(k_B)$

EPFL **Before defining topology - Things to keep in mind** 25 Romain Fleury 1)The Bloch wave number lives on a circle : $k_B \in \left[-\frac{\pi}{A}, \frac{\pi}{A}\right]$ $k_B = \pm \frac{\pi}{A}$

2) The Hamiltonian lives in the space of 2 by 2 Hermitian matrices (closed path parametrized by k_B)

$$H_{TB}(k_B) = d_0 \boldsymbol{\sigma_0} + d_x(k_B) \boldsymbol{\sigma_x} + d_y(k_B) \boldsymbol{\sigma_y} + d_z(k_B) \boldsymbol{\sigma_z}$$

3) The eigenvalues of the Hamiltonian give the two frequency bands $\omega_{\pm} = d_0 \pm \left| \vec{d}(k_B) \right|$

4) The band gap closes when $\left| \vec{d}(k_{B,close}) \right| = 0$ Restricting to insulators excludes the origin

EPFL Defining topology under chiral symmetry

EPFL The winding number as a topological invariant

EPFL Scattering matrices: textbook definition

Goal: define topology directly from S

EPFL Unitarity of S

S conserves power flux \Leftrightarrow S is unitary: $(S^{\dagger}S) = \mathbb{I}_m, S \in U(m)$ (ex: lossless system)

Proof: For all input
$$S_+$$
, $S_+^{\dagger}S_+ = S_-^{\dagger}S_- \iff S_+^{\dagger}S_+ = S_+^{\dagger}(S^{\dagger}S)S_+ \iff S_+^{\dagger}(S^{\dagger}S - \mathbb{I}_m)S_+ = 0$

One port example:
$$S = R = e^{j\theta} \in U(1)$$

Two port example:
$$S = \begin{pmatrix} j \cos \theta & \sin \theta \\ \sin \theta & j \cos \theta \end{pmatrix} \in U(2)$$

EPFL Homotopy of unitary matrices

Homotopy group and invariant:

$$\Pi_1(\boldsymbol{U}[\boldsymbol{m}]) = \mathbb{Z} \quad \Rightarrow v(S) = \frac{1}{2\pi} \oint_0^{2\pi} d\theta(\varphi) \quad \Rightarrow v(S) = \frac{1}{2\pi j} \oint_0^{2\pi} d\varphi \frac{d \ln \det S}{d\varphi} = \frac{1}{2\pi j} \oint_0^{2\pi} d\varphi \operatorname{Tr}(S^{\dagger} \frac{dS}{d\varphi})$$

EPFL Scattering topological invariants in the lab

We can define and measure topological invariants from probe scattering.

Topological pumps and scattering: See works by Laughlin, Akhmerov, Brower, Nascimbene, Chong, Hafezi, and many others.

EPFL Topological scattering transitions

Topological transition

= $\Rightarrow j(\omega \mathbb{I} - H) + \Gamma$ non invertible $\Leftrightarrow \exists \psi_{\infty}$ such that $(H + j\Gamma) \psi_{\infty} = \omega \psi_{\infty}$ Singularity

Topological transition = Bound state in continuum !

Introduction to topology

Topological scattering

From graphs to topological networks

Conclusion

EPFL Eulerian graphs

Delplace, SciPost Phys. (2021), doi: 10.21468/SciPostPhys.8.5.081 Zhang, Delplace, Fleury, Science Advances (2023), DOI : 10.1126/sciadv.adg3186 Zhang, Delplace, Fleury, Nature (2021), DOI : 10.1038/s41586-021-03868-7

EPFL Practical Eulerian graphs : circulator networks

Zhang, Delplace, Fleury, Science Advances 9,eadg3186 (2023), Nature 598, 293 (2021)

EPFL The rich physics of non-reciprocal networks

We want to define and measure topological invariants from scattering measurements

EPFL Anomalous immunity to large disorder

Zhang, Delplace, Fleury, Science Advances 9,eadg3186 (2023), Nature 598, 293 (2021)

Romain Fleury

EPFL **Other disorder types**

Zhang, Delplace, Fleury, Nature 598, 293 (2022)

Chern

Romain Fleury

Topological invariant measurements

Zhang, Delplace, Fleury, Science Advances 9,eadg3186 (2023),

EPFL Topological invariant measurements

Zhang, Delplace, Fleury, Science Advances 9,eadg3186 (2023),

EPFL Topological invariant measurements

Zhang, Delplace, Fleury, Science Advances 9,eadg3186 (2023),

Introduction to topology

Topological scattering

From graphs to networks

Conclusion

EPFL Some take-home messages

Topological waves

Topology can garantee nice wave properties: -mode presence -scattering resonance -unidirectional transport

Robust wave scattering

Topological insulators can be used to create scattering signatures/transport channels that can be very robust. Applications ?

0

Measuring scattering invariants

Practical proof of topology From a theory-driven field to an experimentally-driven one ?

50%

Scattering matrix disorder δ_s

100%

Romain Fleury

EPFL

To Optica for inviting me !

To you for attending this webinar !

you

 École polytechnique fédérale de Lausanne