

Singular Metaphotonics: A framework to address light scattering

Patrice Genevet

Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications,

Sophia Antipolis, France

email: pg@crhea.cnrs.fr

Metaphotonics @ CRHEA Group

Assistant Professor

Samira Khadir

nitysc PHASICS life.augmented AFROSPACE · DEFENCE · SECURITY

Postdoctoral Fellows

Renato Martins

Christina Kyrou

Elena Mikheeva

Clément Majorel

PhD Students

Yanel Tahmi (CIFRE Phasics)

Amir Loucif (CIFRE Defense)

Fouad Bentata (CIFRE ST Microelectronics)

Martin Lepers (CIFRE ST Microelectronics)

Nicolas Kossowski

Rémi Colom

Nikita Nikitskiy

Emil Marinov

European Innovation Council

email: pg@crhea.cnrs.fr CRHEA

My group activities

From fundamental concepts to the conception of devices

Topological Metasurfaces

ACS Photonics 8 (2), 603-613 (2021) ACS Photonics 8 (8), 2498-2508 (2021)

Wavefront engineering and metrology of Metasurfaces

Science Adv. 7 (5), eabe1112 (2021) Optica 8 (11), 1405-1411 (2021) Nat. Comm.11 (1), 1-8 (2020) Nat. Comm. 10 (1), 1-8 (2019)

Programmable Active Metasurfaces

State-of-the-art Metasurface Applications in imaging systems

Nature nano. 15 (2), 125-130 (2020)

Nature nano 16, 508–524 (2021) Nature Comm. 13, 1–8 (2022)

email: pg@crhea.cnrs.fr CFCHEA

Locally engineering of the surface response

Generalized Snell laws

 $n_2 \sin \theta_2 - n_1 \sin \theta_1 = 1/k_0 \cdot \partial \phi / \partial x$

N. Yu, <u>P. Genevet</u>, M. A. Kats, F. Aieta, J.P. Tetienne, F. Capasso and Z. Gaburro, *Science* 334,333 (2011).

Metaphotonics, a brief introduction

Wavefront control

Classical lens (~ cm)

Engineering of the phase, amplitude, and polarization of light at an interface

Wafer level fabrication of optical components

Generalities

Phase Addressing Mechanisms

Y. Xie et al., Nat. Nanotechnol. 15, 125–130 (2020)

P Genevet, F Capasso, F Aieta, M Khorasaninejad, R Devlin, Optica 4 (1), 139-152 (2017)

0.65

Re(z)

0.7

0.75

Re(z)

email: pg@crhea.cnrs.fr CF

Motivation

Understand which are the tuning mechanisms available for the design of MS

email: pg@crhea.cnrs.fr CRHEA

R. Colom, E. Mikheeva, K. Achouri, J. Zuniga-Perez, O. Martin, N. Bonod, S. Burger, and P. Genevet (Laser & Photonics Review, in press 2023, <u>arXiv:2202.05632</u>)

Singularities in Photonics

Pierre Coullet

Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, *Light: Science & Applications* (2019). DOI: 10.1038/s41377-019-0194-2

2π –Phase circulation and region of undefined amplitude

email: pg@crhea.cnrs.fr CF

How Metasurfaces are related to singular physics ?

- Existence of parametric singularities where multiple eigenstates become coalescent (EPs)
- Completeness of corresponding Hilbert space breaks down.

=> anomalous effects (spontaneous symmetry-breaking phase transition, direction selectivity, chiral state transfer, & divergent resonance shifts)

email: pg@crhea.cnrs.fr CRHEA

How Metasurfaces are related to singular physics ?

Fabry-Pérot is a non-Hermitian system

R, **T** , ... have complex eigenfrenquencies

email: pg@crhea.cnrs.fr CFCHEA

Study of the response at complex frequencies

H. Li, A. Mekawy, A. Krasnok, & A. Alù (2020) Physical Review Letters, 124(19), 193901.

1. How to exploit singularities?

email: pg@crhea.cnrs.fr CFCHEA

How relative position of singularities influence the phase

<u>Crossing of the branch cut: the topological origin of a universal 2π –phase retardation in non-Hermitian metasurfaces</u>

R. Colom, E. Mikheeva, K. Achouri, J. Zuniga-Perez, O. Martin, N. Bonod, S. Burger, and P. Genevet <u>arXiv:2202.05632</u>, Laser & Photonics Review (in press 2023)

Reflection zero

Condition for 2π resonant phase gradient in reflection?

What do we learn from these expressions?

Assume one input and one output channels, 1 resonance, no absorption losses

Reflection poles:

$$\omega_P = \omega_0 - i\gamma_1 - i\gamma_2$$

 $Im(\omega_P) < 0$

$Im(\omega_{RZ}) < 0$	$\gamma_1 < \gamma_2$	Undercoupling
$Im(\omega_{RZ})=0$	$\gamma_1 = \gamma_2$	Critical coupling
$Im(\omega_{RZ}) > 0$	$\gamma_1 > \gamma_2$	Overcoupling

(Unpublished 2023)

email: pg@crhea.cnrs.fr CFCHEA

Simple example with a Faby-Pérot cavity

Zeros of a simple Fabry-Perot resonator with only one input and output channels

$$\omega_{RZ} = \omega_0 + i\gamma_1 - i\gamma_2$$

2

1.5

Re(ω), 10¹⁵ rad/s

Overcoupling creates resonant phase jump of 2π

(Unpublished 2023)

email: pg@crhea.cnrs.fr CF

Absorption loss: an additional channel

Suppose we have a structure with a mirror (only one scattering channel, $\gamma_2 = 0$) and absorption losses γ_0 :

$$\omega_P = \omega_0 - i\gamma_0 - i\gamma_1 - i\chi$$

Note that in this example with 1 channel and absorption system, the complex values of poles and zeros can be used to calculate the losses

$$\begin{cases} \omega_{RZ} = \omega_0 + i\gamma_1 - i\gamma_0 \\ \omega_P = \omega_0 - i\gamma_1 - i\gamma_0 \end{cases} \longrightarrow \begin{cases} Im(\omega_{RZ}) = \gamma_1 - \gamma_0 \\ |Im(\omega_P)| = \gamma_1 + \gamma_0 \end{cases} \longrightarrow \begin{cases} \gamma_1 = \frac{|Im(\omega_P)| + Im(\omega_{RZ})}{2} \\ \gamma_0 = \frac{|Im(\omega_P)| - Im(\omega_{RZ})}{2} \end{cases}$$

(Unpublished 2023)

email: pg@crhea.cnrs.fr CFCHEA

Role of singularities via complex analysis

Metal-insulator-metal structure around zero reflection singularity

(mn) adius (nm)

HG10 beam-shaping using binary phase mask of 0 and π .

Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69-76 (2021).

Generalization of multimode MIM metasurfaces

(Unpublished 2023)

Transmission zero

2π resonant phase gradient in transmission?

Explaining Huygens Metasurface design with singular optics

Symmetry considerations for T_{Zero}

T_{Zero} states for lossless structures: Time-reversal symmetry

Explaining the Huygens Metasurface with singular optics

Link between T_{Zero} and Huygens MS

email: pg@crhea.cnrs.fr CRHEA

R. Colom, E. Mikheeva, K. Achouri, J. Zuniga-Perez, O. Martin, N. Bonod, S. Burger, and P. Genevet, Laser Photonics Rev., 2200976 (2023)

Explaining the Huygens Metasurface with singular optics

Huygens MS regime has topological origin

email: pg@crhea.cnrs.fr CRHEA

R. Colom, E. Mikheeva, K. Achouri, J. Zuniga-Perez, O. Martin, N. Bonod, S. Burger, and P. Genevet, Laser Photonics Rev., 2200976 (2023)

Any other types of zeros around ?

EV Degeneracy: another way of creating zero

MS behaves are Non-Hermitian system

$$V_1, \lambda_1 = V_2, \lambda_2$$

Extremely rich Physics:

Non-Hermitian Hamiltonian Complex eigenenergies: **Zero and Poles**

email: pg@crhea.cnrs.fr CRHEA

Mathematical point of view: $E_{r,t} = \hat{f}(\omega)E_{in}$ Consider a complex Jones matrix \hat{f} with $a, b, c, d \in \mathbb{C}$:

 $\hat{J} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Therefore, all the matrix can be degraded as the form of: $\hat{f} = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ The eigenvalues are: $\mu_{1,2} = \pm \sqrt{a^2 + bc}$,

In case of degeneracy: $\mu_1 = \mu_2 = 0, \quad \sqrt{a^2 + bc} = 0.$

We get:

$$a = i\sqrt{bc}$$
, or $a = -i\sqrt{bc}$.

With degenerate eigenstates \vec{J} are given as: $\vec{J}_{1,2} = \begin{pmatrix} \sqrt{b} \\ -i\sqrt{c} \end{pmatrix}$, or $\vec{J}_{1,2} = \begin{pmatrix} \sqrt{b} \\ i\sqrt{c} \end{pmatrix}$

P. Genevet, CRHEA, CNRS, France

email: pg@crhea.cnrs.fr CFCHEA

Exceptional Points in Metasurface

If b = c (*reciprocity*), the eigenstates are $\vec{v} \propto \begin{pmatrix} 1 \\ \mp i \end{pmatrix}$ circularly polarized.

email: pg@crhea.cnrs.fr CRHEA

$J_{-+} = 0$ at the exceptional point.

Considering J_{-+} in an arbitrary parameter space R

$$J_{-+}(\mathbf{R}) = Re(J_{-+}) + i \, Im(J_{-+})$$

At the exceptional point P^e , we have a singularity

$$J_{-+}(\boldsymbol{P^e})=0$$

Encircling with closed path *I*, the winding number around the origin is 1, and thus the accumulated phase is:

$$\Phi = \oint_l d\phi = 2\pi$$

email: pg@crhea.cnrs.fr CRHEA

Reflection in Circular Polarization Base

Eigenvalues at $\lambda = 600$ nm

Α

A self-intersecting Riemann surface is shown for the two eigenvalues in the parameter space (L1, L3).

At the exceptional point (EP), the eigenvalues degenerate.

EP at $L_1 = 52 \text{ nm}, L_3 = 119 \text{ nm}$

Degenerated Eigenvalues and Eigenstates

email: pg@crhea.cnrs.fr CFRHEA

Circular Polarization conversion at λ = 600 nm

P. Genevet, CRHEA, CNRS, France

email: pg@crhea.cnrs.fr CRHEA

Wavefront Control - Beam Steering

email: pg@crhea.cnrs.fr CFCHEA

Wavefront Control - Meta-Hologram

EP+PB phase

Adding rotation angle of θ :

CP conversion:

$$r_{\pm\mp}^{\theta}(\boldsymbol{R}) = \left| r_{\pm\mp}^{0}(\boldsymbol{R}) \right| e^{i\varphi\left(r_{\pm\mp}^{0}(\boldsymbol{R})\right)} e^{\mp i2\theta}$$

The total phase is the sum of ET and PB phase:

$$\varphi\left(r_{\pm\mp}^{\theta}(\boldsymbol{R})\right) = \varphi\left(r_{\pm\mp}^{0}(\boldsymbol{R})\right) \mp 2\theta$$

P. Genevet, CRHEA, CNRS, France

email: pg@crhea.cnrs.fr CRHEA

Asymmetric Wavefront Control

Metasurface integration

Metasurface-enhanced LiDAR

Nature nano. 16, 508–524 (2021) Nature comm. 13, 5724 (2022)

CRHEA MS LIDAR

LiDARs applications (MHz beam steering)

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021) & Nat. Comm. 13, 5724 (2022)

email: pg@crhea.cnrs.fr CF

MS LiDAR

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021) & Nat. Comm. 13, 1-8 (2022)

email: pg@crhea.cnrs.fr CF

MS LiDAR to mimic human vision

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021) & Nat. Comm. 13, 1-8 (2022)

Conclusion

Topological nanophotonics opens up exciting new research directions Deep fundamental understanding of the underlying scattering mechanisms

Crossing branch cut provides 2π -phase accumulation \Rightarrow Zero and Pole located across the real axis

✤ Formal explanation of Huygens MS
⇒ Important role of phase singularities

Laser Photonics Rev., 2200976 (2023)

Encircling singularities for wavefront engineering.

Science 373 (6559), 1133-1137 (2021)

email: pg@crhea.cnrs.fr CF

Conclusion

Topological nanophotonics opens up exciting new research directions Deep fundamental understanding of the underlying scattering mechanisms

My group is moving to the **Colorado School of Mines** and I am looking for PhD candidates pg@crhea.cnrs.fr

email: pg@crhea.cnrs.fr CFCHEA