The OSA Thin Films Technical Group Welcomes You

CAVITY RING-DOWN MEASUREMENTS **ON OPTICAL COATINGS** 24 September 2019 • 8:30 AM ET

OSA Thin Films Technical Group

Thin Films Technical Group Leadership Team https://www.osa.org/ThinFilmsTG

Chair Dr. Jue Wang Corning Incorporated USA wangi3@corning.com

Vice Chair Social Media Officer Dr. Selim Elhadj Dr. Anna Sytchkova Lawrence Livermore National Laboratory, USA ENEA - Casaccia Research Centre, Italy elhadj2@llnl.gov anna.sytchkova@enea.it

Event Officer Dr. Xinbin Cheng Tongji University, China chenqxb@tonqji.edu.cn

Webinar Officer (Nano-Structured Based) Dr. Amirkianoosh (Kiano) Kiani **UOIT.** Canada Amirkianoosh.kiani@uoit.ca

Webinar Officer (PVD Based) Dr. Julien Lumeau Institut Fresnel, France

Webinar Officer (ALD Based) Dr. Adriana Szeghalmi Fraunhofer IOF, Germany julien.lumeau@fresnel.fr Adriana.Szeghalmi@iof.fraunhofer.de

Thin Films Technical Group at a Glance

- Focus
 - Optical thin films from fundamentals to applications
 - Our group serves over 1000 global members
- Mission
 - Connect people from academia, institutions and industries in the field
 - Bridge the fundamentals, the know-hows and the new developments
 - Promote networking and career development through continuous learning
- Find Us Here
 - OSA Technical Group Website: www.osa.org/ThinFilmsTG
 - LinkedIn: www.linkedin.com/groups/4783616

Interested in presenting your research? Have ideas for our group activities/events? Please contact us. Thank you!

Events of Thin Films Technical Group in 2019

- Optical Monitoring Systems for Optical Coatings
 12 February 2019 by Dr. Binyamin Robin
- Quality Control and Thin Film Metrology for Future Optical Components 14 May 2019 by Dr. Lars Jensen
- Meet and Greet at OIC 2019
- 6 June 2019 by Dr. Jue Wang

Substrate-Transferable Single-Crystal Optical Coatings
 12 November 2019 9:30 AM ~ 10:30 AM EST by Dr. Garrett Cole

You may find information on upcoming webinars and access the past presentations via ondemand webinars at <u>https://www.osa.org/en-us/get_involved/technical_groups/technical_group_webinars/#ondemand</u>

Today's Webinar

High reflectance/transmittance measurements of laser optics with cavity ring-down (CRD) technique By Prof. Bincheng Li

Bincheng Li holds PhD in Analytical Chemistry from Wuhan University, China in 1995. He is a full professor at the School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China.

He has over 30 years of experience developing testing techniques for optical coatings and over 15 years of experience developing CRD for high reflectance/transmittance measurements. He is the writer of the international standard ISO 13142. He has co-authored over 240 technical papers.

High reflectance/transmittance measurements of laser optics with cavity ring-down (CRD) technique

Bincheng Li

School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China, Chengdu, China and

Chengdu Extrema Optoelectronic Technologies Ltd., China

Engineering Laboratory of Optoelectronic System

Outline

1. Introduction

- 2. History and Principle of CRD for high reflectance/ transmittance measurements
- 3. Recent technical developments of CRD for characterization of laser optics
- 4. ISO 13142: CRD for high reflectance/ transmittance measurements (Standard)
- 5. CRD Instrumentation
- 6. Conclusions

Introduction

- HR mirrors have been widely used in
- High-power laser systems (NIF)
- Gravitational-wave detection (LIGO, VIRGO)
- Laser gyros
- Cavity-enhanced spectral analysis

Precise and reliable measurements of high reflectance/transmittance (R/T > 99.9%) are required.

Gravitational wave detection with LIGO

Round Robin – Reflectance Measurement

Participating laboratories

Optical Interference Coatings 2010 Measurement Problem

Institution	Contact
Aerospace Cooperation, Los Angeles, USA	James D. Barrie
Chinese Academy of Sciences, Shanghai, China	Hongbo He
Chinese Academy of Sciences, Chengdu, China	Bincheng Li
Escuela Universitaria de Optica, Madrid, Spain	Juan Carlos Martinez Anton
Fraunhofer FEP, Dresden, Germany	Kerstin Täschner
Fraunhofer IST, Braunschweig, Germany	Michael Vergöhl
Institut f. Photonische Technologien, Jena, Germany	Christian Mühlig
JDSU, Santa Rosa, USA	Cliff Alapa
Laser Zentrum Hannover, Germany	Detlev ~··
MLD Technologies, Eugene, USA	Sven N
National Research Council, Ottawa, Canada	Daniel 200
Perkin Elmer, Rodgau-Jüdesheim, Germany	Ivo Ste
OMT Solutions, Eindhoven, The Netherlands	Ivo Sci
RAFAEL, Haifa, Israel	Shay J
Raytheon Space & Airborne Systems, El Segundo, USA	Robert
University of the West of Scotland, Paisley, UK	Frank

OIC Measurement Problem, Tucson, June 10, 2010

Fraunhofer

Samples

The samples (substrate polishing + coating) were manufactured & sponsored by LAYERTEC GmbH, Mellingen, Germany

- Substrates: superpolished fused silica, 25 mm diameter,
- Coating process: magnetron sputtering
- Coating designs: quarterwave Ta₂O₅ / SiO₂ systems for 1064 nm, 0° AOI
 - sample type A: (HL)¹⁶ H
 - sample type B: (HL)¹⁰ H

Techniques used: Spectrophotometry Cavity Ring-down (CRD) Laser Ratiometry

Sample type	av loss (nom)	st dev (ppm)	R (%)
oumpie type			1((/0)
• A:	39.9	2.4	99.996
• B	1216.5	73.9	99.878

OIC Measurement Problem, Tucson, June 10, 2010

Round Robin – Reflectance Measurement

R results of participants

Sample type A zoom

CRD is the only technique which can measure precisely reflectance (R) higher than 99.99%.

R results of participants Sample type B zoom

Reference value: 99.878%

For R ~ 99.8%, CRD shows better accuracy.

光电系统工程实验室 Engineering Laboratory of Optoelectronic System

Spectrophotometry

100%-transmittance line of a typical spectrophotometer

Standard arrangement of a spectrophotometer

Typical repeatability of a spectrophotometer for R/T measurement: \pm 0.1%

光电系统工程实验室 Engineering Laboratory of Optoelectronic System

Comparison

Testing technique	Spectrophotometry	Laser ratio	Cavity Ring-down	
Typical measurement range (%)	0 – 100	0 - 100	99.0 - >99.99999	
Maximum measurable Reflectance (%)	99.9	99.99	> 99.99999	
Measurement sensitivity (%)	0.01	0.01	< 0.00001	
Typical Reflectance measurement accuracy (%)	±0.3	> ± 0.01	< ± 0.0001	
System configuration	Simple	Complex	Simple	
Calibration	Yes	Yes	No	
Alignment	Easy	Difficult	Easy	
Operation	Easy	Difficult	Easy	

CRD is capable of measuring reliably R > 99.9%

Outline

- **1.** Introduction
- 2. History and Principle of CRD for high reflectance/ transmittance measurements
- 3. Recent technical developments of CRD for characterization of laser optics
- 4. ISO 13142: CRD for high reflectance/ transmittance measurements (Standard)
- 5. CRD Instrumentation
- 6. Conclusions

Phase-shift - CRD technique

J M Berbelin [Aerospace Corporation, USA] Appl. Opt. 19, 144(1980)

Fig. 1. Photon-lifetime measurement method.

Fig. 2. Tan α vs intracavity distance.

Accuracy achieved: ~ 100ppm

Continuous wave (cw) - CRD technique

Z A Anderson [California Institute of Technology, USA] Appl. Opt. 23, 1238(1984)

Fig. 1. Conceptual schematic of decay measuring device. Optical switch shuts off light when detector output reaches a preset threshold level.

Pre-set threshold circuit and optical switch for CRD signal recording

Accuracy achieved: $R = 0.999820 \pm 3ppm$ $R = 0.998730 \pm 7ppm$

Continuous wave (cw) - CRD technique

0

10

G Rempe [California Institute of Technology, USA Opt. Lett. 17, 363(1992)

Dwer

Fig. 1. Diagram of the apparatus used for measurement of cavity-decay time and finesse.

Cavity length modulation for optical coupling; **Pre-set threshold circuit and optical** switch for CRD signal recording.

Accuracy achieved: $R = 0.9999984 \pm 0.15$ ppm

20

Time $t(\mu s)$

30

40

N Uehara [U of Electro-Communications, Japan, Opt. Lett. 20, 530(1995)

Fig. 1. Experimental setup of measurements of cavity decay time and response function of a Fabry–Perot cavity. A cw laser is frequency stabilized to the TEM_{00} longitudinal mode by the Pound–Drever–Hall technique. DBM, double-balanced mixer; PZT, piezoelectric transducer.

Single-frequency laser with frequency stabilized to F-P cavity Dual frequency modulation employed to generate FM sidebands

Y Gong [IOE, CAS, China, Appl. Phys. B93, 355(2008)

Phase-shift CRD

Low coupling efficiency leads to limited measurement range

Continuous wave (cw) CRD

Optical switching, cavity length modulation or frequency modulation or frequency stabilization, and preset threshold are employed for CRD measurements

Optical feedback CRD

improved coupling efficiency leads to higher SNR, therefore higher accuracy

Pulsed CRD

simple, relatively high cost, limited measurement accuracy: ~10⁻⁵ - 10⁻⁶ (depends on beam quality)

In CRD, the cavity decay time rather than the absolute intensity is measured, making the reflectance measurement independent of the power fluctuation of the light source.

Key parameter: decay time constant

CRD Arrangement – *R* **Measurement**

CRD Arrangement – T Measurement

子科越大学 CRD signal and R/T calculations

A typical CRD decay signal - single exponential function

Cavity mirror R:

$$R = \sqrt{R_1 R_2} = \exp\left(\frac{-L_0}{c \tau_0}\right)$$

 L_0 : Initial cavity length τ_0 : Initial cavity decay time

Test mirror R:

$$R_s = \exp\left(\frac{L_0}{c\tau_0} - \frac{L}{c\tau}\right)$$

L: Test cavity length *τ*: Test cavity decay time

Test optics T:

$$T_{s} = \exp\left(\frac{L_{0}}{c\tau_{0}} - \frac{L + (n_{s} - 1)d}{c\tau}\right)$$

n_s: Refractive index of test optics *d*: Thickness of test optics

Outline

- **1.** Introduction
- 2. History and Principle of CRD for high reflectance/ transmittance measurements
- 3. Recent technical developments of CRD for characterization of laser optics
- 4. ISO 13142: CRD for high reflectance/ transmittance measurements (Standard)
- 5. CRD Instrumentation
- 6. Conclusions

子科越大学 Recent Technical Development

Simultaneous measurement/mapping of reflectance (*R*), transmittance (*T*) and optical loss (*K*)

光电系统工程实验室 Engineering Laboratory of Optoelectronic System

Simultaneous measurements of *R*, *T*, and *K*

Simultaneous mapping of R, T, and K (HR)

光电系统工程实验室 Engineering Laboratory of Optoelectronic System

Simultaneous mapping of R, T, and K (AR)

Simultaneous mapping of reflectance, transmittance and optical loss provides useful information on defect characterization and coating performance optimization of laser optics.

Sample: fused silica plate with thickness 2mm

Typical CRD signals: (a) empty cavity; (b) *OPD*= 0.0354nm

Stress Birefringence

Comparison

Sample: fused silica plate

(a) CRD birefringence map

(b) Hinds Exicor 300 birefringence map

The measurement sensitivity of CRD is over two orders of magnitude better than the commercial instruments for birefringence measurements

Outline

- **1.** Introduction
- 2. Principle of CRD for high reflectance/ transmittance measurements
- 3. Recent technical developments of CRD for characterization of laser optics
- 4. ISO 13142: CRD for high reflectance/ transmittance measurements (Standard)
- 5. CRD Instrumentation
- 6. Conclusions

ISO TC 172 / SC 9 / WG 1

Project: CRD for high reflectance measurements

Project initialized: Nov. 2008

NWIP approved: Feb. 2012

Publish: June 2015

Revision approved: November 2018 (to include high transmittance measurement)

Typical CRD configurations recommended in ISO 13142

Pulsed CRD

Simple, relatively high cost, limited measurement accuracy

Continuous wave (cw) CRD

Experimentally complex due to the use of AOM (optical switching), PZT (cavity length modulation), etc.

Optical feedback CRD

Improved coupling efficiency leads to higher SNR, therefore higher accuracy

Remarks

- Stable cavity condition is required to eliminate the impact of diffraction loss.
- Finite instrumental response time has to be taken into consideration (unless a fast detector is used)
- It is recommended to use the same cavity length for both initial cavity and test cavity to minimize environmental impact
- >The measurement accuracy may be checked via the independence of the reflectance on the cavity length, or the linear dependence of the decay time on the cavity length.

Decay time versus cavity time

Slope of the linear dependence of the decay time on the cavity length

Outline

- **1.** Introduction
- 2. Principle of CRD for high reflectance/ transmittance measurements
- 3. Recent technical developments of CRD for characterization of laser optics
- 4. ISO 13142: CRD for high reflectance/ transmittance measurements (Standard)
- 5. CRD Instrumentation
- 6. Conclusions

Key issues in CRD instrument development

1 Laser source

operation mode: pulsed or cw pulse energy or output power (SNR) pulse duration (with respect to round-trip time) bandwidth: broad band or narrow band (power coupling) beam quality: TEM₀₀ or milti- modes (mode matching)

2 Cavity configuration

initial cavity: straight or folded ("V")

3 Photo- detector

high response speed, high sensitivity, low noise

4 Instrumental response time

Effect of overall response time on CRD decay time determination

CRD Instrumentation

CRD instruments have been developed at several wavelengths for reflectance/transmittance measurements and mapping

Developed CRD instrument at 635nm for reflectance/transmittance measurements of laser optics used in laser gyros.

Developed CRD instrument at 1064nm for reflectance mapping of largeaperture mirrors used in high-power laser systems

CRD Instrument Development

Instrument Performance

Higher SNR in CRD signal and therefore higher measurement precision due to the use of patented optical feedback CRD technique.

Key Function

Separate or simultaneous highprecision measurements and/or mapping of reflectance, transmittance and optical loss of HR and AR laser optics

Key Specifications

R / T range: 99.5% - 99.9999% Optical loss range: 0.5% - 0.0001% Measurement sensitivity: <0.1ppm Measurement repeatability: <1ppm Sample size: up to diameter 500mm

HR measurement of cavity mirrors (1064nm)

HR measurement of test mirrors (1064nm)

For test mirror R measurement, the first two numbers following the last "9" of the reflectance value can be always accurately determined.

Example: 1D scan of 200mm in length

Sample: Diameter 240mm, AOI 22.5° for 1064nm Scan step: 0.1mm

Example: 2D mapping area of 200mm in diameter

Example: high-resolution mapping of small area

Conclusions

CRD is the technique of choice for the measurements of reflectance/transmittance higher than 99.9%.

CRD can measure and map simultaneously reflectance, transmittance, and optical loss of HR/AR laser optics with up to sub-ppm precision.

Low-cost, easy-operation and nearly maintenance-free CRD instruments have been developed for high reflectance/transmittance/optical loss measurements and mapping, which provide useful information for defect characterization and performance optimization of laser optics.

References

[1] S. Xiao, B. Li, H. Cui, and J. Wang, Sensitive measurement of stress birefringence of fused silica substrates with cavity ring-down technique, Opt. Lett. 43(4):843(2018)

[2] Y. Han, B. Li, L. Gao, and S. Xiong, Reflectivity mapping of large-aperture mirrors with cavity ringdown technique, Appl. Opt. 56(4):C35(2017)

[3] H. Cui, B. Li, S. Xiao, Y. Han, J. Wang, C. Gao, and Y. Wang, Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique, Opt. Express 25(5):5807(2017)

[4] B. Li, H. Cai, Y. Han, L. Gao, C. Gao, and Y. Wang, Simultaneous determination of optical loss, residual reflectance and transmittance of highly anti-reflective coatings with cavity ring down technique, Opt. Express 22(23): 29135(2014)

[5] H. Zu, B. Li, Y. Han, and L. Gao, Combined cavity ring-down and spectrophotometry for measuring reflectance of optical laser components, Opt. Express 21(22): 26735(2013)

[6] Z. Qu, B. Li, and Y. Han, Measuremnt of losses in optical components using filtered optical feedback cavity ring-down technique, Proc. SPIE 8206: 82061M(2012)

[7] Y. Gong, B. Li, and Y. Han, Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity, Appl. Phys. B 93: 355(2008)

[8] Y. Gong and B. Li, High reflectivity measurement with a broadband diode laser based cavity ring-down technique, Appl. Phys. B 88(3): 477(2007)

Thank you for your attention

Any suggestions or comments,

or need more technical details,

or interested in CRD instruments for your applications,

please contact Bincheng Li at

bcli@uestc.edu.cn or bcli@ioe.ac.cn

