The OSA Fiber Modeling and Fabrication Technical Group Welcomes You

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT SUPERCONTINUUM MODELLING IN OPTICAL FIBERS 26 August 2019 • 8:00 a.m. ET

Technical Group Leadership 2019

Giulio Vampa Chair Stanford PULSE Institute

Eric Cunningham SLAC National Accelerator Laboratory

Hanieh Fattahi Max-Planck-Institute of Quantumoptics

Benjamin Webb Laboratory for Laser Energetics, University Of Rochester

Zhiyi Wei Institute of Physics, Chinese Academy of Sciences

Current sample from another group

Technical Group at a Glance

Focus

- Development and application of high intensity lasers as well as novel XUV and x-ray sources
- The physics of high intensity light interactions with matter
- Short wavelength sources including insertion devices for storage rings (undulators and wigglers), plasma X-ray lasers, electron beam based sources and X-ray free electron lasers.

• Mission

- To benefit *YOU* and to strengthen *OUR* community
- Webinars, podcasts, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGactivities@osa.org</u>.

• Find us here

- Website: <u>www.osa.org/OH</u>
- Facebook: <u>www.facebook.com/OSAShortWavelengthTG</u>
- LinkedIn: <u>www.linkedin.com/groups/8356401</u>

Current sample from another group

Today's Webinar

Reaching for the brightest light at SLAC's FACET-II

Dr. Sebastian Meuren

Postdoctoral Researcher and PI of a strong-field QED experimental campaign at SLAC's FACET-II Princeton University, USA <u>smeuren@pppl.gov</u>

Speaker's Short Bio:

Ph.D. degree from Heidelberg University/Max Planck Institute for Nuclear Physics in 2015. Otto Hahn Medal from the Max Planck Society. Currently a postdoctoral researcher in the department of Astrophysical Sciences at Princeton University.

b UNIVERSITÄT BERN

Everything you always wanted to know about supercontinuum modelling in optical fibers

Alexander Heidt

Institute of Applied Physics University of Bern Switzerland

26.08.2019, OSA Webinar Series

Supercontinuum "White light laser"

Femtosecond Laser

Photonic Crystal Fiber

What you will learn

- Concepts of Nonlinear fiber optics
 - the power of dispersion engineering
- A short overview of the most important **nonlinear effects** occurring during supercontinuum generation in optical fibers

UNIVERSITÄT Bern

- Describing the physical effects mathematically in the Generalized Nonlinear Schrödinger equation (GNLSE)
- Solving the GNLSE in an efficient way
- Noise effects in supercontinuum generation and how to include them into your simulation

Nonlinear optics – the tailor shop for light

Propagation of electromagnetic fields through fibers

What intensities are we talking about?

"Everyday life intensities"

Intensity of sunlight on earth: 1000 W/m² = 0.1 W/cm² When focused with a magnifying glass: ~ 100 W/cm² (max)

Intensities in nonlinear fiber optics:

Femtosecond laser pulse (100 fs, 10 nJ) focused into 2 μ m core diam. fiber:

~ 1 000 000 000 000 W/cm² = 1 TW/cm²

> 10 orders of magnitude higher than everyday life intensities!

Fibers for nonlinear optics

Revolution: photonic crystal fibers (PCF)

- Silica core
- Cladding of air-holes
- Design allows to "squeeze" the light into tiny cores (~ 1 µm)

UNIVERSITÄT Bern

- → very high intensities!
- → very high nonlinearity!
- Most important:

We can <u>control</u> nonlinear effects with the geometry of the fiber

This design flexibility only exists in fibers and waveguides!

Engineering the nonlinearity

Refractive index profile of specialty fibers

large core small index step low confinement low light intensity

(material)

small core large index step high confinement high light intensity

Dispersion

- Refractive index of materials depends on the wavelength
- A laser pulse propagates in a medium with the group velocity

$$v_g = c \left(n - \lambda \frac{dn}{d\lambda} \right)^{-1}$$

• The group velocity itself depends on the wavelength, i.e. there exists a Group Velocity Dispersion (GVD)

$$D = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}.$$

D < 0: "Normal" dispersion: red faster than blue D > 0: "Anomalous" dispersion: blue faster than red

Dispersion engineering

> Dispersion is highly sensitive to the geometry of the air hole cladding

Dispersion engineering

^b UNIVERSITÄT BERN

> Dispersion is highly sensitive to the geometry of the air hole cladding

Control nonlinear effects by tailoring the **dispersion profile** by designing the **geometry of the fiber** Most powerful tool in fiber optics

Occurrence of nonlinear effects

	Anomalous dispersion	Normal dispersion
Self-phase modulation		
Soliton dynamics		×
Raman effect		
Modulation instability/ Phase-matched 4-wave- mixing		×

Control of nonlinear effects and their interaction by tailoring the dispersion!

- χ⁽²⁾ = 0 in silica! (centro-symmetric material) (no second-harmonic generation, sum frequency generation, etc)
- Only THIRD ORDER nonlinear effects in optical fibers!

Constructing a pulse propagation equation

- General Maxwell's equations are 4-dimensional
 - \rightarrow computationally expensive to solve
 - → How can we adapt them to nonlinear fiber optics?

Assumptions:

Input pulse

- linearly polarized along x-axis,
- carrier frequency w_0

Fiber

- single mode
- polarization maintaining
- propagation along z-axis

Ansatz:

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{x} F(x,y,\omega) \widetilde{A}(0,\omega) e^{i[\beta(\omega)z - \omega t]} d\omega$$
fiber mode spectral phase profile envelope shift

Some simplifications:

mode profile / effective mode area independent of frequency:

$$F(x, y, \omega) \to F(x, y, \omega_0) \qquad \qquad A_{\text{eff}}(\omega) = \frac{\left(\iint_{-\infty}^{\infty} |F(x, y, \omega_0)|^2 \mathrm{d}x \mathrm{d}y\right)^2}{\iint_{-\infty}^{\infty} |F(x, y, \omega_0)|^4 \mathrm{d}x \mathrm{d}y}$$

• Taylor expansion of propagation constant:

$$\beta(\omega) = \beta_0 + (\omega - \omega_0)\beta_1 + \frac{1}{2}(\omega - \omega_0)^2\beta_2 + \cdots \qquad \beta_m = (d^m\beta/d\omega^m)_{\omega = \omega_0}$$
$$\overline{\beta_1 = v_g^{-1}} \qquad \overline{\beta_2 > 0 : \text{normal GVD}}$$
$$\beta_2 < 0 : \text{anomalous GVD}$$

• Transform to reference frame co-moving with the input pulse

$$T = t - \beta_1 z$$

ightarrow in practice we set $\beta_0=\beta_1=0$

Constructing a pulse propagation equation $\mathbf{E}(\mathbf{r}, T) = \hat{x}F(x, y, \omega_0)A(z, T)e^{i\omega_0 T}$ Solve varying envelope rapid oscillations $\sqrt{P_0}$ A is normalized such that $|A(z,T)|^2$ yields

Т

instantaneous power in Watts.

 $A(z=0,T) = \sqrt{P_0}e^{-(T^2/T_0^2)}$

Example for Gaussian input pulse:

Now: plug ansatz into Maxwell's equations to derive equation for A(z,T)

→ details: e.g. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013)

Remarkably simple 1+1-dimensional partial differential equation

• Pulse itself changes the refractive index of the medium (Kerr effect):

 $n = n_0 + n_2 I(t) = n_0 + n_2 (P(t)/A_{eff})$

• New frequency components are created with a time correlation:

$$\omega(z,t) = \omega_0 - \gamma z \,\partial P(t) / \partial t$$

Spectral broadening Multi-peak structure in the spectrum "Chirped" pulse

Soliton dynamics

• Fundamental soliton: invariant upon propagation (except constant nonlinear phase shift)

B Requirements:

$$A(0,T) = \sqrt{P_0} \operatorname{sech}(T/T_0); \quad N = \sqrt{\frac{\gamma P_0 T_0^2}{|\beta_2|}} = 1$$

Solution:

soliton number

b

$$A(z,T) = \sqrt{P_0} \operatorname{sech}(T/T_0) e^{ik_{sol}z}; \ k_{sol} = \gamma P_0/2;$$

Soliton dynamics

Higher order solitons

• Higher order solitons are periodic upon propagation:

$$A(z + z_{\rm sol}, T) = A(z, T)$$

Requirements:

$$A(0,T) = \sqrt{P_0} \operatorname{sech}(T/T_0); \ N = \sqrt{\frac{\gamma P_0 T_0^2}{|\beta_2|}} = 2, 3, 4... \text{ quantized! } z_{sol} = \frac{\pi}{2} \frac{T_0^2}{\beta_2}$$

 $\beta_2 < 0$ $\hat{N} = i\gamma |A|^2$

b

- Quantum mechanical picture: photon loses energy to phonons excited in the material
- Classical picture: amplification of "Stokes" wave red-shifted from the pump

- Quantum mechanical picture: photon loses energy to phonons excited in the material
- Classical picture: amplification of "Stokes" wave red-shifted from the pump
- GNLSE includes material response:

$$R(t) = (1 - f_R)\delta(t) + \underline{f_R h_R(t)}^{?}$$

- use analytical approximation for $h_R(t)$ developed in literature
 - → e.g. Lin & Agrawal, Opt. Lett. 31, 3086 (2006)
- alternative: use measured Raman spectrum $g_R(\omega) \propto \text{Im}\left(\tilde{h}_R(\omega)\right)$ and Kramers-Kronig to determine real part

Soliton self-frequency shift and dispersive waves

Perturbations of N = 1 solitons

Ideal soliton propagation is disturbed by presence of Raman scattering and higher order dispersion:

UNIVERSITÄT Bern

Soliton self-frequency shift:

- → continuous spectral red-shift
- → Soliton slows down due to lower group velocity at longer wavelengths

Higher order dispersion:

- → soliton sheds energy to a **dispersive wave** in the normal dispersion regime
- → position determined by phase matching condition

Soliton fission

Perturbations of higher order solitons

Full GNLSE

- Higher order soliton propagation disturbed by Raman scattering and higher order dispersion
- Break up into fundamental solitons (here: N = 3)
- Break up at the point of strongest temporal compression
- Pulses separate in time and spectrum due to Raman scattering

- Occurs mainly in anomalous dispersion regime
- 2 pump photons annihilated, create 1 photon in each side band
- Side band position: energy / momentum conservation → dispersion!
- If unseeded: shot noise amplification!

- Occurs mainly in anomalous dispersion regime
- 2 pump photons annihilated, create 1 photon in each side band
- Side band position: energy / momentum conservation → dispersion!
- If unseeded: shot noise amplification!

Dispersion engineering for SC generation

Conventional vs. ANDi design

Conventional design

- > both normal and anomalous dispersion regions
- pumping in anomalous dispersion close to zero dispersion wavelength (ZDW)
- > designed to maximize spectral bandwidth
- soliton dynamics and phase-matched
 4-wave mixing play dominant role

All-normal dispersion (ANDi) design

- > normal dispersion at all wavelengths
- pumping close to the minimum dispersion wavelength (MDW)
- > designed for low-noise performance
- soliton dynamics and phase-matched
 4-wave mixing completely suppressed
- > SPM and "optical wave-breaking" play dominant role

Analysis of simulation results

Time-frequency analysis

U

b

$$\Sigma_g^A(\omega,\tau) = \left| \int_{-\infty}^{\infty} A(t) g(t-\tau) \exp(i\omega t) dt \right|^2$$

simulated field ga

gate pulse (e.g. input pulse for your simulation)

Full dynamics of continuum generation

Anomalous dispersion pumping

b UNIVERSITÄT BERN

b

Full dynamics of continuum generation

All-normal dispersion supercontinuum

b UNIVERSITÄT BERN

b

- no pulse-breakup
- minimum fine structure
- Unaffected by noise (up to ~1 ps pump pulses)

Dispersion engineering for SC generation

Conventional vs. ANDi SC (Femtosecond pumping)

Conventional supercontinuum

Focus: spectral bandwidth

- > low pump power, very broad spectra
- > highly structured and complex spectral profiles
- > pump pulse breaks up into multiple solitons
- > temporal and spectral interference effects
- > susceptible to noisy pulse-to-pulse fluctuations

ANDi supercontinuum

UNIVERSITÄI

Focus: ultrafast and low-noise applications

- > single ultrashort pulse maintained
- > smooth, flat spectra, steep edges
- > excellent pulse-to-pulse stability
- > higher pump peak power required to obtain bandwidth comparable to conventional SC

- Numerics: continuous problem is solved approximately on a discrete grid of points
- Idea:
 - $_{\odot}$ represent input field on a discrete temporal grid of size $\mathit{n_{t}}$ with resolution ΔT .
 - Fourier relations then define a frequency grid with resolution $\Delta
 u = 1/(n_t \Delta T)$
 - propagate stepwise through z (fiber length)
- Time-domain formulation contains a few difficulties:
 - Temporal derivatives in dispersive operator and shock term can only be approximated in discrete case → errors
 - Convolution integral difficult to compute

→ Solution: transfer into frequency domain!

dispersive and nonlinear operators can be applied in approximation-free manner
 frequency domain formulation is fundamentally more accurate

Convolution integral vanishes:

$$\mathcal{F}(\int_{-\infty}^{\infty} A(\tau) B(t-\tau) \mathrm{d}\tau) = \tilde{A}(\omega) \tilde{B}(\omega)$$

Explicitly:

Time derivatives vanish:

Validity: does the envelope approximation break down for very short pulses?

- ➔ No, still valid even for single cycle and sub-cycle pulses!
- → e.g. Genty et al., Opt. Express 15, 5382 (2007)

Time vs. frequency domain formulation

Errors caused by approximate treatment of derivatives in time-domain

UNIVERSITÄT BERN

"Correct" frequency domain simulation

Idea: dispersion and nonlinear operator act independently over small propagation step h

Error: in reality, dispersion and nonlinearity act together

the bigger, the better!

$$\tilde{A}_{\text{calc}}(z+h,\omega) = \tilde{A}_{\text{true}}(z+h,\omega) + \mathcal{O}(h^3)$$

Numerical solution of the GNLSE

Runge-Kutta in the Interaction Picture (RK4IP)

$$\frac{\partial \tilde{A}(z,\omega)}{\partial z} = \left(\hat{D}(\omega) + \hat{N}(z,\omega)\right) \tilde{A}(z,\omega)$$

Idea: intelligent combination of the split-step Fourier method and an efficient integration of the nonlinear step using a Runge-Kutta algorithm

Explicit algorithm to propagate $\tilde{A}(z,\omega) \rightarrow \tilde{A}(z+h,\omega)$ \Rightarrow see Hult, J. Lightwave Technol. 25, 3770 (2007)

Error of RK4IP method:

$$\tilde{A}_{\text{calc}}(z+h,\omega) = \tilde{A}_{\text{true}}(z+h,\omega) + \mathcal{O}(h^5)$$

UNIVERSITÄT BERN

Adaptive step size algorithms

Efficient and fast calculations

→ UNIVERSITÄT BERN

Concept:

- Estimate current error during calculation
- Increase or decrease step size in order to maintain a given level of accuracy
- ➔ Makes the calculation significantly faster
- Avoids manual search for an appropriate constant step size

Examples of methods:

- Photon number conservation
 Heidt, J. Lightwave Technol. 27, 3984 (2009)
- Step size doubling Sinkin et al., J. Lightwave Technol. 21, 61 (2003)

Implementation details

Determining grid sizes

2 constraints:

 <u>Sampling frequency > maximum frequency of the field</u> (Nyquist)

b

UNIVERSITÄT BERN

$$\lambda_{\min} = \frac{c}{\frac{1}{2\Delta t} + \frac{\omega_0}{2\pi}} = \frac{1}{\frac{1}{2c\Delta t} + \frac{1}{\lambda_0}} \qquad \lambda_{\min} \sim 500 \text{ nm} \to \Delta t < 2\text{fs}$$

Width of the grid > maximum time delay of the fieldMaximum delay \sim 5 ps \rightarrow Time window T > 10 ps

Number of grid points $n_p = T/\Delta t = 5000$ (set n_p = 2¹³)

To avoid negative frequencies: $\Delta t > \lambda_0/(2c) \rightarrow \Delta t > 1.41$ fs

Be aware of wrap around effects if your window size is too small!

Extras

• Frequency dependent nonlinear parameter $\gamma(\omega_0)
ightarrow \gamma(\omega)$

$$\tilde{C}(z,\omega) = \left[\frac{A_{\rm eff}(\omega)}{A_{\rm eff}(\omega_0)}\right]^{-1/4} \tilde{A}(z,\omega) \qquad \gamma(\omega) = \frac{n_2 n_0 \omega_0}{c n_{\rm eff}(\omega) \sqrt{A_{\rm eff}(\omega) A_{\rm eff}(\omega_0)}}$$

UNIVERSITÄT BERN

solve GNLSE as usual. Requires knowledge of $A_{
m eff}(\omega), n_{
m eff}(\omega)$

Non-polarization maintaining fiber

- \rightarrow 2 coupled GNLSEs, one for each principal polarization axis.
- → implementation / solver identical to "simple" GNLSE
- → e.g. Bravo Gonzalo et al., Sci. Rep. 8, 6579 (2018), "Methods"

• Multimode fiber

- ➔ many coupled GNLSEs
- ➔ gets complicated
- → Poletti and Horak, J. Opt. Soc. Am. B 25, 1645 (2008).

Noise properties of SC sources

Conventional supercontinuum

b

Dispersion D [ps/nm/km]

Simulations including shot noise

(best case scenario excluding any technical noise)

Noise properties of SC sources

Conventional supercontinuum

Simulations including shot noise

(best case scenario excluding any technical noise)

Noise in GNLSE simulations

One photon per mode model

Shot noise can be included into the simulations by injecting **one photon with random phase** into each spectral simulation bin : ω_m

$$\tilde{A}_{\text{oppm}}(\omega_m) = \sqrt{\hbar(n_p - 1)dT\omega_m} \exp\left(-i\Phi(\omega_m)\right)$$

 $\Phi(\omega_m)$ randomly sampled in interval [0, 2 π]

This oppm field is then added to the input pulse:

$$A(z=0,T) = A_{\text{input pulse}}(T) + \mathcal{F}^{-1}\left(\tilde{A}_{\text{oppm}}(\omega)\right)$$

Noise floor important for correct simulation of noiseseeded nonlinearities

- Modulational instability
- Raman effect

Noise properties of SC sources

Conventional supercontinuum

^b UNIVERSITÄT BERN

Quantify shot-to-shot fluctuations by first-order coherence function at zero path difference

$$ig|g_{12}^{(1)}(\omega)ig| = igg|rac{\langle {\widetilde A}_i^{\,*}(\omega) {\widetilde A}_j(\omega)
angle_{i
eq j}}{\sqrt{\langle |{\widetilde A}_i(\omega)|^2
angle \langle |{\widetilde A}_j(\omega)|^2
angle}}$$

g = 1: perfect amplitude / phase stability g = 0: random fluctuations

20 independent simulations \rightarrow 190 unique pairs

Noise properties of SC sources

ANDi supercontinuum

b UNIVERSITÄT BERN

Quantify shot-to-shot fluctuations by first-order coherence function at zero path difference

$$|g_{12}^{(1)}(\omega)| = \left|rac{\langle \widetilde{A}_i^{\,*}(\omega) \widetilde{A}_j(\omega)
angle_{i
eq j}}{\sqrt{\langle |\widetilde{A}_i(\omega)|^2
angle \langle |\widetilde{A}_j(\omega)|^2
angle}}
ight|$$

g = 1: perfect amplitude / phase stability

g = 0: random fluctuations

20 independent simulations \rightarrow 190 unique pairs

Pump pulse duration (50 kW peak power)

Decoherence only becomes significant at Tp \approx 1 ps (vs. ~100 fs in conventional SC generation)

- **Nonlinear fiber optics** provides powerful tools to shape laser pulses
 - in the spectral domain
 - In the temporal domain
 - in their noise and coherence properties
- **Numerical simulations** based on the GNLSE help to
 - understand nonlinear effects and their interaction
 - design new light sources with properties tailored to specific applications
- Using tips of this webinar and mentioned resources **coding your own simulation** is not difficult!

Have fun exploring nonlinear optics!

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

UNIVERSITÄT Bern

Sources of sample code

● UNIVERSITÄT BERN

Book "Supercontinuum Generation in Optical Fibers"

- contains some simple sample code suitable for solving with Matlab's internal ODE solver
- This code does not contain full complexity of GNLSE

www.freeopticsproject.org

- Complete Matlab scripts to download
- GNLSE with RK4IP solver and adaptive step size control using photon number conservation
- Good starting point to customize your own code

Commercial mode solving software

- e.g. COMSOL Multiphysics
- Solves stationary Maxwell equations with the boundary conditions of the fiber geometry
- extracts dispersion and mode field parameters

- Empirical models
 - Exist for an increasing number of specialty optical fibers
 - Provide empirical fitting values to generate dispersion profiles directly from fiber design parameters
 - Excellent for quickly scanning over a large range of fiber designs
 - for hexagonal PCF structures:
 - → Koshiba and Saitoh, Opt. Lett. 29, 1739 (2004).
 - → Saitoh and Koshiba, Opt. Express 13, 267 (2005)

UNIVERSITÄT BERN