07:00-17:30 • Registration, Tamaya Ballroom Lobby

Tamaya Ballroom ABCD

08:15—08:25 Opening Remarks

Presented by Conference General Chair, Li Li, National Research Council Canada, Canada, and Program Chair, Robert Sargent, VIAVI Solutions, USA

08:25-09:05

Keynote Presentation: New Trends and Developments in the Field of Optical Interference Coatings, Norbert Kaiser, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Germany. Consumer electronics, semiconductor lithography, medicine, life sciences, solar energy, architecture, aerospace, automotive, telecommunication, and quantum devices are pushing optical thin film technology to new frontiers, which are far beyond the present capabilities of established deposition processes and production strategies.

09:05-09:30

MA • Polarization Coatings

Presiders: Robert Schaffer; Evaporated Coatings, Inc, USA and Christopher Stolz; Lawrence Livermore National Laboratory, USA

MA.1 • 09:05

Infrared Wire-grid Polarizers with Improved Broadband Transmission Based on a Combination of a Nanogap Control and an Antireflection Coating, Wonyoung Kim¹, Tae Young Kim¹, Kyu-tae Lee¹, Minbaek Lee¹, Chang Kwon Hwangbo¹; ¹Inha Univ., Korea. We demonstrate infrared wire-grid polarizers with enhanced transmittances over a broad range of wavelengths from 3 to 12 μm exploiting a combination of a nanogap control and an antireflection coating.

MA.2 • 09:10

Design and Fabrication of Superior Depolarized Beam Splitter Applied in Laser Beam Combining Technology, Hongfei Jiao¹, Xinshang Niu¹, Jinlong Zhang¹, Xinbin Cheng¹, Zhanshan Wang¹, ¹*Tongji Univ., China.* We design a superior non-polarizing beam splitter using a special depolarized initial film structure. The structure fabricated by electron-beam evaporation retains T>98.57%@990nm and R>99.52%@976nm when the angle of incidence is 45 degree.

MA.3 • 09:15

Anisotropic Optical Coatings for Polarization Control in High-power Lasers, Lina Grineviciute¹, Rytis Buzelis¹, Karolis Gricius¹, Tomas Tolenis¹; ¹Center for Physical Sciences and Technology, Lithuania. The novel approach of high band-gap birefringent coatings was proposed and investigated. Zero-order retarders with low optical losses and the potential to withstand high laser fluences at 355 and 266 nm wavelengths were produced.

MA.4 • 09:20

Study on the Polarization Contrast of Polarization Modulated Mirror Affected by Simulated Space Atomic Oxygen, Weibo Duan¹, Baojian Liu¹, Daqi Li¹, Deming Yu¹, Dingquan Liu¹; ¹Shanghai Inst. of Technical Physics, China. The effect of space atomic oxygen on the polarization contrast of polarization modulated mirrors is investigated with different experimental doses. The results are important to the long-term space engineering application of the mirrors.

MA.5 • 09:25

Optical Coatings for a Spectrally Controlled Depolarization, Quentin Ailloud¹, Myriam Zerrad¹, Antonin Moreau¹, Julien H. Lumeau¹, Claude Amra¹; ¹*Fresnel Inst., France.* We show how to control the wavelength variations of the polarization degree of a beam reflected by specific thin film depolarizers. The design, manufacturing and characterization of the depolarizing device is detailed.

09:30—10:00 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

10:00-11:00

MB • Coatings for Astronomy and Space

Presiders: James Barrie; The Aerospace Corporation, USA and Hsi-Chao Chen; National Yunlin Univ of Sci. and Tech., Taiwan

MB.1 • 10:00 Invited

Risk Mitigation and Testing of Optical Coatings for the Aladin LIDAR on the Aeolus Satellite, Denny Wernham¹; ¹*The European Space Agency, Netherlands.* The Aladin instrument is the sole payload onboard of the Aeolus satellite. This paper describes the challenges during the instrument development paying particular regard to the optics in the laser and emission path, and the in-orbit performance.

MB.2 • 10:25

Behavior of 1064nm Coatings under Proton and Gamma Irradiation, Hongfei Jiao¹, Xuemin Zhang¹, Xinbin Cheng¹, Jinlong Zhang¹, Zhanshan Wang¹, ¹Tongji Univ., China. The 1064nm coatings are fabricated, under irradiation with gamma rays(5Mrad) and exposure to low-energy (50keV) protons. It is proved that the coatings are stable in this condition by simulation of SRIM software and irradiation test.

MB.3 • 10:30

Investigations of Corrosion Feature Development on Protected Silver Mirrors during Accelerated Environmental Exposure, Kelsey A. Folgner¹, Chung-Tse Chu¹, Scott D. Sitzman¹, Sean C. Stuart¹, James D. Barrie¹, ¹Aerospace Corporation, USA. Protected silver mirrors were subjected to accelerated environmental exposure testing to investigate the effects of layer composition on the development and growth of corrosion features along particular layer interfaces.

MB.4 • 10:35

Expanding the Far UV Range of Aluminum-coated Mirrors for Space-based Observations to Reflect Hydrogen Lyman Lines via Fluoride Multilayers, David D. Allred¹, Leoul E. Tilahun², Joseph G. Richardson^{1,3}, Robert S. Turley¹, ¹Brigham Young Univ., USA; ²Applied Physics and Computer Engineering, Morehouse College, USA; ³Code 551: optics branch, Goddard Space Flight Center, USA. While no solid barrier layer is transparent below ~103nm, simulations show that ~9.5nm LiF on 8.5nm MgF₂ on Al could reflect some hydrogen Lyman lines better than a single fluoride layer does. Experiments are promising.

MB • Coatings for Astronomy and Space—Continued

MB.5 • 10:40

Correlation of Long-duration and Accelerated Testing of Protected Silver Mirrors, Chung-tse Chu¹, Diana R. Alaan¹, James D. Barrie¹, Peter D. Fuqua¹; ¹The Aerospace Corporation, USA. The stability of protected silver mirror coatings was studied by both long-exposure and a mixed-flowing-gas test with a goal of establishing accelerated testing parameters for Ag mirrors that are operated or stored in ambient conditions.

MB.6 • 10:45

Study on Anti-frosting Method by ITO for the Telescope in Antarctica, Jie Tian¹, Jinfeng Wang¹; ¹Nanjing Inst. of Astronomical Optics & Technology, CAS, China. Antarctic is one of the best astronomical observation sites. However, mirror frosting is a problem that Antarctic astronomical instruments must overcome. This article will discuss ITO thin films used for frost prevention in reflection film system.

MB.7 • 10:50

Multi-dielectric Broadband Antireflection Deposition on the World's Largest Fused Silica Lens, Abdelhamid Ghrib¹, Adrien Hervy¹, François Riguet¹, Justin Wolfe², Christophe Couteret¹, Rémi Lhuillier¹, Hervé Leplan¹; ¹Safran Reosc, France; ²Lawrence Livermore National Laboratory, USA. The antireflection coating of the world's largest fused silica lens is presented. The final coating exhibits more than 97% of averaged throughput for 300-1100nm spectral band. Coating has been performed with a qualified PVD process.

MB.8 • 10:55

Research Development of Ultra Wideband High Reflection Films for Astronomical Telescopes, Jinfeng Wang¹, Jie Tian¹, ¹Nanjing Inst Astronomical Optics & Tech, China. More critical performance is required for astronomical mirrors, such as wider wavelength region and better environment durability. In this paper, the design and experimental progress of ultra-wideband high-reflective film are introduced.

11:00-12:00 • MAB • Monday Morning Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

MA.1	MB.2
MA.2	MB.3
MA.3	MB.4
MA.4	MB.5
MA.5	MB.6
	MB.7
	MB.8

12:00–13:30 • **Conference Lunch**, *Cottonwoods Pavilion and Patio*

13:30-14:50

MC • Energy Management and Infrared Coatings

Presiders: Jennifer Kruschwitz, University of Rochester, USA and James Oliver, University of Rochester, USA

MC.1 • 13:30 Invited

Surface Coatings for Improving Solar Cell Efficiencies, Qing Shen¹, ¹The Univ. of Electro-Communications, Japan. The efficiencies of the next generation solar cells such as quantum dot (QD)-based solar cells and perovskite solar cells can be improved largely through surface coating on the interfaces and the mechanism have been investigated.

MC.2 • 13:55

Selective Color Perovskite Solar Cell Modulated by Organic Fabry-Perot Interference Structure, Ming-Hsien Yen¹, Hsi-Chao Chen¹, Shu-Wei Guo¹, Ya-Jun Zheng¹, Yu-Ren Zhao¹, Jia-Wei Liang¹; ¹National Yunlin Univ of Sci. and Tech., Taiwan. The Fabry-Perot cavity principle was used to selective color organic perovskite solar cell, and the color is selected by the thickness controlling of the resonant cavity then is applied to the building integrated photovoltaic.

MC.3 • 14:00

Symmetrical TiN-SiO₂ Multilayer as an Absorber for Solar Thermo-photovoltaic System, Yi-Jun Jen¹, Meng-Jie Lin¹, Zheng-Xing Li¹, Ming-Zheng Li¹, ¹National Taipei Univ. of Technology, Taiwan. A symmetric film stack with TiN and SiO₂ was designed using admittance tracing method as an ultra-thin light absorber. With optical property of TiN, the film stack is suitable to be applied for solar thermo-photovoltaics.

MC.4 • 14:05

Effective, Angle-independent Radiative Cooler Based on One-dimensional Photonic Crystal, Huanxin Yuan¹, Weidong Shen¹, Chenying Yang¹, Yueguang Zhang¹, Xu Liu¹; ¹*Zhejiang Univ., China*. We proposed an effective radiative cooler based on one-dimensional photonic crystal, which has an average emissivity of 96% within the atmospheric transparency window (8-13µm) and the maximum cooling power density of 113.0W/m² at night.

MC.5 • 14:10

Thermochromic VO₂ Coatings for Energy Control, Bill Baloukas¹, Rodrigue Beaini¹, Simon Loquai¹, Oleg Zabeida¹, Jolanta-Ewa Klemberg-Sapieha¹, Ludvik Martinu¹; ¹Engineering Physics, Polytechnique Montreal, Canada. Thermochromic VO₂ coatings offer opportunities in a variety of applications such as smart windows and smart radiators. By incorporating these films into appropriately designed material architectures, significant performance enhancements are obtained.

MC.6 • 14:15

VO₂-polymer Nanostructured Coatings for Smart Windows: A Numerical Study, Cindy Péralle¹, Renée Charrière¹, Jenny Faucheu¹; ¹Mines Saint-Etienne, France. Thermochromic vanadium dioxide loaded into a polymer opal photonic crystal is studied through optical simulations. The possibility of using this material as flexible transparent energy efficient smart material is explored.

MC.7 • 14:20

Infra-red Multi-layer Coatings Using YbF₃ and ZnS in an Ion Beam Sputtering System, Alex Ribeaud¹, Jürgen Pistner¹, Harro Hagedorn¹, Shay Joseph²; ¹Bühler Leybold Optics, Germany; ²Rafael Advanced Defense System, Israel. Optical and mechanical properties from Infra-Red Anti-Reflective coatings deposited using YbF₃ and ZnS as layer materials in an Ion Beam Sputtering system.

MC.8 • 14:25

Laser-related Broadband Dichroic Filters Based on Ge/YbF₃ and ZnS/YbF₃ Thin-film Materials, Tatiana Amotchkina¹, Michael K. Trubetskov², Marcus Schulz³, Vladimir Pervak¹; ¹Ludwig-Maximilians-Univ. Munich, Germany; ²Max-Planck-Institut für Quantenoptik, Germany; ³Agilent Technologies, Germany. We developed broadband filters for pump-probe spectroscopy studying ultrafast dynamics of biological molecules. ZnS/YbF₃ and Ge/YbF₃ filters operating at Brewster angle of ZnSe substrate transmit mid-infrared and reflect near-infrared radiation.

MC.9 • Withdrawn

MC.10 • 14:35

Durable Infrared Optical Coatings Based on Pulsed DC Sputtering of Hydrogenated Carbon, Des Gibson¹; ¹Univ. of the West of Scotland, UK. Optical, mechanical, stress and environmental properties of room temperature pulsed DC sputter deposited hydrogenated carbon are presented. Results show suitable optical, environmental and durability performance for durable infrared optical coatings.

MC.11 • Withdrawn

MC.12 • 14:45

Peeling Prevention by SiO Layer for Far-infrared Filter Consisting of Ge/Na₃AlF₆, Koichi Muro¹; ¹ASAHI SPECTRA Co., Ltd., Japan. We found the effect of peeling prevention by SiO layer on the Na₃AlF₆ ultra-thick film constituting the far-infrared filter (Ge/Na₃AlF₆). Using this filter, the HFC gas imaging was performed with a thermal camera.

14:50-15:15 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

15:15-16:15

MD • Novel Coating Processes and Materials

Presiders: Daniel Poitras; National Research Council of Canada, Canada and Jue Wang; Corning Advanced Optics, USA

MD.1 • 15:15 (Invited)

Progress in Optical Interference Filters Manufactured by Thermal Drawing, Hooman Banai¹; ¹Everix Optical Filters, USA.

MD.2 • 15:40

Glancing-angle-deposited Silica Films for Ultraviolet Wave Plates, Sara MacNally¹, Chris Smith¹, John Spaulding¹, Justin Foster¹, James B. Oliver¹; ¹Laboratory for Laser *Energetics, USA.* Birefringent silica films are formed by glancing-angle deposition to fabricate quarter- and half-wave plates at a wavelength of 351 nm. A multilayer design is implemented to achieve low-loss transmittance with a high 351-nm laser-damage threshold.

MD.3 • 15:45

High Reflectivity Coatings Based on Sculptured Thin Films, Tomas Tolenis¹, Lina Grineviciute¹, Andrius Melninkaitis², Rytis Buzelis¹; ¹Department of Laser Technologies, FTMC, Lithuania; ²Vilnius Univ., Lithuania. Novel route is presented to manufacture high reflection coatings using only SiO₂ material and GLAD method. A numerous analyses indicate the superior properties of all-silica coatings when compared with standard methods for Bragg mirrors production.

MD.4 • 15:50

Solution-processed Angle-insensitive Structural Colors via Electrodeposition of Thin-films, L. Jay Guo¹, Saurabh Acharya¹, Chengang Ji¹; ¹Department of Electrical Engineering and, USA. Applications of structural-colors has been limited due to their high fabrication cost. Here, we introduce an electrodeposition-process for the fabrication of structural-colors at ambient conditions, thereby avoiding the need for vacuum-based systems.

MD.5 • 15:55

Fluorinated Hybrid Coatings Deposited by IBACVD, Oleg Zabeida¹, William Trottier-Lapointe², Erwens Broustet¹, Ludvik Martinu¹; ¹Polytechnique Montreal, Canada; ²R&D, Essilor International, France. SiOCHF films deposited in a standard box coater fitted with a broad beam ion source demonstrate low refractive index combined with a relatively high hardness and elastic recovery values, making them attractive for use in ophthalmic applications.

MD.6 • 16:00

Contamination-resistant Multifunctional Coatings, Nadja Felde^{1,2}, Anne-Sophie Munser^{1,2}, Anne Gärtner^{1,2}, Sven Schröder¹, Andreas Tünnermann^{1,2}; ¹*Fraunhofer IOF, Germany*; ²*Friedrich-Schiller Univ., Germany.* Combining thin film design with structural design enables contamination-resistant coatings with high optical quality to be realized. Balancing self-cleaning and light scattering relevant structural components is of particular importance.

MD.7 • 16:05

Enhanced Optical Absorption Achieved via Laser Induced Nano-porous Silicon Thin-film for Photovoltaic Devices, Chirag Paladiya¹, Amirkianoosh Kiani¹; ¹Univ. of Ontario Inst. of Tech, Canada. Laser induced diverse silicon nano-porous structures were studied to comprehend its light absorption capabilities within visible range of light. In addition, various characterization methods like SEM and EDX were employed for sound comprehension.

MD.8 • 16:10

Kinetic Study of Polystyrene Thin Film Depositions by Cationic Chemical Vapor Deposition, Dominic Giambra¹, Wyatt Tenhaeff¹; ¹Univ. of Rochester, USA. Cationic initiated chemical vapor deposition (catCVD) synthesizes high quality polymer thin films. catCVD is nonliving, follows a second order rate law, and has an activation energy on the same order of magnitude as solution polymerizations.

16:15-17:30 • MCD • Monday Afternoon Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

MC.2	MD.2
MC.3	MD.3
MC.4	MD.4
MC.5	MD.5
MC.6	MD.6
MC.7	MD.7
MC.8	MD.8
MC.10	
MC.11	
MC.12	

19:00-20:00

Evening Presentation: Invisibility Cloaks and Other "Impossible" Optics—Metamaterials: From Revolutionary Science to Disruptive Technology, David R. Smith, *Duke* University, USA. Metamaterials have provided a new framework for the design of optical and electromagnetic devices, giving way to the demonstration of unique materials and structures such as negative index media and "invisibility cloaks." In this talk I'll provide an introduction to metamaterials and an overview of their profound impact on optics and their current transition to commercial products.

07:30-17:30 • Registration, Tamaya Ballroom Lobby

Tamaya Ballroom ABCD

08:15-09:30

TA • Metamaterials and Metal-based Coatings

Presiders: Norbert Kaiser; Fraunhofer IOF, Germany and Michel Lequime; Institut Fresnel, France and Hiroshi Murotani; Tokai Univ., Japan

TA.1 • 08:15 Invited

Optical Coatings for Metamaterials, Yi-Jun Jen¹; ¹National Taipei Univ. of Technology, Taiwan. With design methods used in optical coatings, the equivalent admittance and refractive index of stratiform metamaterial can be tailored for low loss metamaterial, ultra-thin dark metamaterial, angular insensitive filter and hyperbolic metamaterial.

TA.2 • 08:40

Broadband Absorption of Indium Tin Oxide Nanograting Hyperbolic Metamaterials in Near-infrared Region, Tae Young Kim¹, Jihye Yoo¹, Minsuk Kim¹, Wonyoung Kim¹, Kyutae Lee¹, Chang Kwon Hwangbo¹; ¹Inha Univ., Korea. We investigated optical properties of indium tin oxide(ITO) nanograting hyperbolic metamaterial(HMM) and present a broadband absorption behavior of ITO nanograting HMM that exploit epsilon-near-zero and epsilon-near-pole resonances in near-infrared.

TA.3 • 08:45

Tuning Absorption in Angular Selective Slanted Column Films, Sasha Woodward-Gagné¹, Oleg Zabeida¹, Bill Baloukas¹, Ludvik Martinu¹; ¹*Polytechnique Montreal, Canada.* Core-shell slanted column thin films (SCTF) are made through atomic layer deposition of TiN over SiO₂ SCTFs. The films exhibit angular selectivity similar to metallic SCTFs with the added benefit of highly tunable absorption.

TA.4 • 08:50

Demonstration of Dual-channel Two-dimensional Reflection Grating Filter, Jianyu Zhou¹, Xinbin Cheng¹, Jinlong Zhang¹, Hongfei Jiao¹, Zhanyi Zhang¹, Haoran Li¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* The dual-channel two-dimensional reflection grating filter is demonstrated. The design of anti-reflective thin films suppresses the sidebands and the corresponding excitation modes of dual-channel reflection peaks are determined.

TA.5 • 08:55

Photonic Spin Hall Effect Based on Broadband High-efficiency Metasurfaces, Zhanyi Zhang^{1,2}, Haigang Liang^{1,2}, Tao He^{1,2}, Zhanshan Wang^{1,2}, Xinbin Cheng^{1,2}; ¹*Tongji Univ., MOE Key Laboratory of Advanced Micro-Structured Materials, China;* ²*School of Physics Science and Engineering, Tongji Univ., Inst. of Precision Optical Engineering, China.* The photonic spin Hall effect metasurfaces utilizing broadband high-efficiency half-wave plate were proposed, which can generate broadband high-intensity left and right circular polarized light that could be applied in chiroptical spectroscopy.

TA.6 • 09:00

Metamaterials to Design a Class of Optical Coatings with Identical Properties, Claude Amra¹, Ahmed Alwakil¹, Myriam Zerrad^{1,2}, Michel Lequime^{1,2}, ¹Institut Fresnel, CNRS, France; ²Aix Marseille Univ, France. We use transformation optics to design optical coatings all having identical amplitude properties.

TA.7 • 09:05

Metal Dielectric Grating with High Laser Damage Threshold, Fanyu Kong¹, Xi Zou^{2,3}, Jiao Xu^{3,1}, Junming Chen^{3,1}, Yibin Zhang¹, Yonglu Wang¹, Yunxia Jin¹, Hongchao Cao¹, Peng Chen^{3,1}, Jianda Shao¹; ¹Shanghai Inst of Optics and Fine Mech, China; ²School of Physical Science and Technology, ShanghaiTech Univ., China; ³Univ. of Chinese Academy of Sciences, China. A new 800nm center-wavelength metal dielectric grating with all SiO₂ grating structures is designed and tested, which has a high laser damage threshold of 0.40J/cm² on grating surface at pulse duration of 32fs.

TA.8 • 09:10

Optical Properties of Uniform and Nanostructured TiN Thin Films, Yi-Jun Jen¹, Ming-Zheng Li¹, Zheng-Xing Li¹, Meng-Jie Lin¹; ¹National Taipei Univ. of Technology, Taiwan. TiN thin films and nanorod array are grown in magnetron sputtering system. The tailored permittivity via changing the nitrogen flow rate is reported. The polarization dependent plasmonic modes are investigated by analyzing the absorptance spectra.

TA.9 • 09:15

Optimizing the Deposition of Sputtered Gold Island Films with Time Derivative Surface Reflectance, Antonin Riera¹, Bill Baloukas¹, Oleg Zabeida¹, Ludvik Martinu¹; ¹*Polytechnique Montreal, Canada.* Analysis of the *in situ* reflectance spectra during sputtering of gold allows for the characterization of different growth regimes throughout the deposition. The validity of this method is assessed and discussed.

TA.10 • 09:20

Localized Surface Plasmon Investigation of Silver Islands Layer Formed by Thermal Evaporation Technique, Audrius Valavičius¹, Alfonsas Juršenas¹, Mantas Drazdys¹, Alexandr Belosludtsev¹, Ramutis Drazdys¹, ¹Laser Technologies, FTMC, Lithuania. Investigation of optical, morphology, and localized surface plasmon properties of silver islands layers was done. Silver layer was formed by thermal evaporation. Dependencies on deposition temperature and silver layer thickness were studied.

TA.11 • 09:25

Patterned Absorbers in Visible to NIR Region, Zhen Wang¹, Weidong Shen¹, Chenying Yang¹, Yueguang Zhang¹; ¹*Zhejiang Univ., China.* We propose a novel absorbers structure, based on Cr/Cr₂O₃ film stack which presents high absorption up to ~99% for 400-1200nm band. An etching method preventing corrosion of the glass substrate is also proposed.

TA.12 • Withdrawn

10:00-11:00

TB • Nanostructured Materials

Presiders: Weidong Shen; Zhejiang Univ., China and Markus Tilsch; Viavi Solutions Inc, USA

TB.1 • 10:00 Invited

Semiconducting 2D Materials of Atomic Thickness in Optical Coatings: Towards Novel Applications, Falk Eilenberger^{1,2}, ¹Inst. of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Univ., Germany; ²Center of Excellence in Photonics, Fraunhofer-Inst. for Applied Optics and Precision Engineering IOF, Germany. I will discuss their specific properties, focusing on the development of excitonic systems and on highly nonlinear optical coatings for wavelength conversion and quantum light sources.

TB.2 • 10:25

Nanostructured Layers for Optical Coatings with Improved UV-transmission, Ulrike Schulz¹, Friedrich Rickelt¹, Peter Munzert¹, Nancy Gratzke¹; ¹*Fraunhofer IOF, Germany.* Nanostructured low-index layers are produced on glass and plastics by coating and plasma-etching of organic and inorganic materials. The organic content was reduced afterwards to achieve antireflective coatings with increased UV-transparency.

TB.3 • 10:30

Quantized Nanolaminates as Versatile Materials for Optical Interference Coatings, Morten Steinecke¹, Holger Badorreck¹, Marco Jupé¹, Thomas Willemsen², Lars Jensen¹, Detlev Ristau¹; ¹Laser Zentrum Hannove e.V., Germany: ²Laseroptik GmbH, Germany. In this paper, the theoretical foundation of quantized nanolaminates is explained and the dependence of the optical band gap on the quantum well thickness is derived. The manufacturing is investigated applying molecular dynamics simulation.

TB.4 • 10:35

Manufacturing of Quantized Nanolaminates, Marco Jupé¹, Thomas Willemsen², Liu Hao³, Morten Steinecke¹, Lars Jensen¹, Detlev Ristau¹; ¹Laser Zentrum Hannover e.V., Germany; ²Laseroptik GmbH, Germany; ³LNQE, Leibniz Universität Hannover, Germany. The application of novel quantized nanolaminates delivers more flexible application and allows to optimize the properties. In the paper, the manufacturing of nanolaminates using different deposition techniques and material combinations are discussed.

TB.5 • 10:40

Elimination of Spatial Hole Burning in Solid-state Lasers Using Anisotropic Nanostructured Thin Films, Koffi Amouzou¹, Jean-Francois Bisson¹; ¹Universite de Moncton, Canada. Birefringent layers deposited on top of laser mirrors enable the elimination of the nodes of the intra-cavity standing wave pattern by forcing the polarization states of counter-propagating waves to be orthogonal, resulting in single-mode emission.

TB.6 • 10:45

Design and Prototyping of Hybrid Interference Filters, Anna Sytchkova¹, Maria Luisa Grilli², Guohang Hu², Yingjie Chai², Daniele De Felicis³, Hongbo He², Edoardo Bemporad³, Angela Piegari¹, Jianda Shao²; ¹Energy Department, ENEA Optical Coatings Group, Italy; ²Key Laboratory of Materials for High Power Laser, SIOM CAS, China; ³Engineering Department, Univ. Roma 3, Italy. Nano-structured surfaces for hybrid interference optical filters were designed by finite-element method and their prototypes were fabricated using r.f. sputtering, focused ion beam lithography and direct laser writing.

TB.7 • 10:50

Anti-reflective Nanostructures and Coatings on Sapphire Substrates for Extreme Temperature Applications, Shay Joseph¹, Evyatar Kassis¹, Gal Reich¹, Doron Yadlovker¹, Arit Shinman¹, ¹*Rafael, Israel.* Anti-reflective coatings and nanostructures were fabricated on sapphire substrates. The transmission measured was 98-99%, in contrast to the transmittance of uncoated sapphire which is 88%. The coatings and nanostructures survived up to 1200C.

TB.8 • Withdraw

11:00-12:00 • TAB • Tuesday Morning Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

TA.2	TB.2
TA.3	TB.3
TA.4	TB.4
TA.5	TB.5
TA.6	TB.6
TA.7	TB.7
TA.8	
TA.9	
TA.10	
TA.11	

12:00–13:30 • Conference Lunch, Cottonwoods Pavilion and Patio

13:30-14:45 TC • Design Problem and Design I

Presiders: Karen Hendrix; Viavi Solutions, USA and Yi-Jun Jen; National Taipei Univ. of Technology, Taiwan

TC.1 • 13:30 Invited

Results of the OIC 2019 Design Problem Contest, Jennifer D. Kruschwitz¹, Vladimir Pervak², Jason Keck³; ¹Univ. of Rochester, USA; ²Ludwig-Maximilians-Universität München, Germany; ³Reynard Corporation, USA. The design problems for OIC 2019 involved revisiting an OIC 2007 beamsplitter challenge and designing for a light-mixing system.

TC.2 • 14:00

Design of Multilayer Coatings Using Deep Search Methods, Michael K. Trubetskov¹; ¹Max Planck Inst. of Quantum Optics, Germany. New deep search needle optimization, gradual evolution, and design cleaner methods are proposed. Novel methods have an outstanding performance and allow obtaining solutions of the most challenging design problems from scratch.

TC.3 • 14:05

Narrowband Angle Filter, William H. Southwell¹; ¹Table Mountain Optics, USA. Narrowband pass filters are essentially narrowband angle filters, but only in the plane of incidence. It is shown that a combination of tilted polarization-insensitive narrowband pass filters will select light from narrow angle patches.

TC.4 • 14:10

Facet Coating Designs Robustness, Daniel Poitras¹; ¹National Research Council of Canada, Canada. In this work, we use Monte Carlo and Polynomial Chaos Expansion (PCE) approaches to evaluate the robustness of a waveguide facet coating design, and estimate the sensitivity indices its individual layers.

TC.5 • 14:15

Designing with Very Thin Optical Films, Ronald R. Willey¹, Fred T. Goldstein²; ¹Willey Optical, Consultants, USA; ²FTG Software LLC, USA. Indices of refraction for very thin layers (<30 nm) change widely with the layer thickness, the bounding materials, and the processes used to produce the films. The tools to design with these layers are described.

TC.6 • 14:20

Angle-insensitive Decorative NIR Transmission Filter, Chenying Yang¹, Chengang Ji², Weidong Shen¹, Kyu-tae Lee², Yueguang Zhang¹, L. Jay Guo²; ¹Zhejiang Univ., China; ²Univ. of Michigan, USA. We proposed a decorative but near-infrared-transmitting filter based on one-dimensional photonic crystal, which possesses high-efficiency and angularinsensitivity.

TC.7 • 14:25

Optimized Angular Insensitive Filter by Admittance Tracing Method, Yi-Jun Jen¹, Meng-Jie Lin¹, Zhi-Heng Yu¹, ¹National Taipei Univ. of Technology, Taiwan. An angular insensitive narrow bandpass filter is designed using the admittance tracing method. In order to improve the effects of sideband, the initial bandpass spectra are improved here by adjusting thickness of each film.

TC.8 • 14:30

Focused Light on Thin-films Revisited: Analytical Results for Parallel and Tilted Apertures, Thomas Goossens^{1,2}, Chris Van Hoof^{2,1}; ¹KU Leuven, Belgium; ²imec vzw, Belgium. The central wavelengths of narrowband thin-film filters shift when illuminated at oblique incidence. We discuss new analytical results for focused light from the aperture of a lens. The results are also applicable to tilted apertures.

TC.9 • 14:35

Bandwidth of Principle Stopbands of Thin-film Thickness Modulated Designs, Bruce E. Perilloux¹; ¹Coherent Inc., USA. Thickness modulated designs are investigated for bandwidth of principle stopbands (1,0) and (1,1) versus modulation frequency. The bandwidths of the (1,0) and (1,1) stopbands, and their sum are virtually constant for modulation frequencies 0.1-0.5.

TC.10 • 14:40

Experimental Validation of the Robust Optimization Algorithm for High-fluence Optical Coatings, Marine Chorel¹, Eric A. Lavastre¹, Thomas Lanternier¹, Bruno Bousquet², James B. Oliver³, Amy Rigatti³, Nicolas Bonod⁴, Alexei A. Kozlov³, Brittany Hoffman³, Stavros Demos³, Jerome Daurios¹, Jerome Neauport¹; ¹CEA , France; ²Celia, Bordeaux Univ., France; ³LLE, USA; ⁴Institut Fresnel, France. The robust-optimization algorithm is validated for the laser-induced damage threshold of multilayer-dielectric mirrors. The robust design approach shows a significant improvement compared to the classical design, validating our calculation method.

14:45—15:10 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

15:10—15:15 • In Memoriam: Stefan Günster, Marcus Turowski, Tamaya Ballroom EFGH

15:15-16:10

TD • Sensing and Design II

Presiders: Ulrike Schulz; Fraunhofer IOF, Germany and Michael Trubetskov; Max Planck Inst. of Quantum Optics, Germany

TD.1 • 15:15 Invited

The Role of Optical Coatings in Super-resolution Optical Nanoscopy, Xu Liu^{1, 1}*State Key Lab of Modern Opt. Instrum., Zhejiang Univ., China*. The super-resolution microscopy is widely used for sub bio cell imaging. There are many new coating devices used in the imaging system. We review the applications of optical coatings in different nanoscopy.

TD.2 • 15:40

Surface-enhanced Raman Scattering from Obliquely Deposited TiN Nanorod Arrays, Yi-Jun Jen¹, Meng-Jie Lin¹, Hou-Lon Cheang¹, Zhi-Heng Yu¹, Meng-Hsun Chung¹; ¹National Taipei Univ. of Technology, Taiwan. Titanium nitride nanorod arrays were prepared as surface-enhanced Raman scattering substrates using glancing angle deposition. The signals of titanium nitride nanorod arrays with different porosities were measured to discuss the enhancement.

TD.3 • 15:45

Optimized All-dielectric Interference Coatings for Giant Field Enhancement in Sensing Applications, Dikai Niu^{2,1}, Myriam Zerrad², Aude Ledeu², Vincent Aubry¹, Fabien Lemarchand², Ali Passian³, Juan Antonio Zapien⁴, Claude Amra²; ¹PSA Groupe, France; ²Institut Fresnel, France; ³Oak Ridge National Laboratory, USA; ⁴City Univ. of Hong Kong, China. A new synthesis method based on null-admittance location is presented. Its first application to the design of high sensitivity sensors is detailed and the expected

TD.4 • 15:50

Design and Investigation of Tunable Tamm Plasmons Based Device for Infrared Applications, Alexandr Belosludtsev¹, Naglis Kyzas¹, Victor Reshetnyak²; ¹Center for Physical Sciences and Technol, Lithuania; ²Physics Faculty, Taras Shevchenko National Univ. of Kyiv, Ukraine. Tunable Tamm plasmons based device was design and investigated. The suggested device structure comprises the Bragg mirror and metallic layer. The influence of the layers thicknesses on the device transmittance, reflectance and absorption was studied.

TD.5 • 15:55

Automated Design of Optical Thin Films via Statistical Inference and Parallelized Computation, Amit Deliwala¹; ¹Light Matters LLC, USA. The design of optical films for broadband applications is computationally intensive and algorithmically challenging. Demonstrated here is film design via pseudo-inverse transform sampling and parallelization for light bulb efficiency enhancement.

TD.6 • Withdrawn

TD.7 • 16:05

Numerical Modeling of Visible Electromagnetic Wave through Optical Filters Using One-dimensional Finite-difference Time-domain (1D-FDTD) Method, Remalyn V. Fajardo¹, Raymund Lee Antonio C. Sarmiento²; ¹Univ. of San Carlos, Philippines; ²Biology and Environmental Studies, Univ. of the Philippines, Philippines. Various optical filter applications each demand specific device performance. With the quest for better design optimization, the 1D-FDTD method was utilized to model optical filters. The model was verified and found to give accurate results.

16:10-17:00 • TCD • Tuesday Afternoon Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

TC.2	TD.2
TC.3	TD.3
TC.4	TD.4
TC.5	TD.5
TC.6	TD.7
TC.7	
TC.8	
TC.9	
TC.10	

17:00-18:30 • TE • Postdeadline Papers Session, Tamaya Ballroom EFGH

08:00—17:30 • Registration, Tamaya Ballroom Lobby

Tamaya Ballroom ABCD

08:15-09:30

WA • Patterned and Variable Coatings / Process Control

Presiders: Harro Hagedorn; Bühler Leybold Optics, Germany and Chang Kwon Hwangbo; Inha Univ., Korea

WA.1 • 08:15 (Invited)

Progress in Patterned Filters for Optical Sensors, Georg J. Ockenfuss¹, Robert B. Sargent¹, Fred Van Milligen¹; ¹VIAVI Solutions Inc., USA. The patterning of optical filters to enable sensors dates back more than 50 years. Today this technology serves numerous aerospace, industrial, and consumer electronics applications.

WA.2 • 08:40

Laser-induced Control of the Central Wavelength of Bandpass Filters, Antoine Bourgade¹, Frederic Lemarquis¹, Thomas Begou¹, Julien H. Lumeau¹; ¹Institut Fresnel - UMR 7249 – CNRS, France. We perform theoretical and experimental demonstration of a-posteriori control of the central wavelength of bandpass filters. This approach relies on chalcogenide-based photosensitive layers. Examples of various Fabry-Perot filters is provided.

WA.3 • 08:45

Structured IR Thin Film Coatings for Multi-spectral Imaging, Rémi Lhuillier¹, Léopold Macé¹, El-Houcine Oubensaid¹, Benjamin Portier¹, Hervé Leplan¹, Olivier Gauthier-Lafaye², Antoine Monmayrant²; ¹Safran Reosc, France; ²LAAS-CNRS, France. Safran Reosc deposits and patterns thin film coatings on the active region of infrared focal-planearrays for real-time multispectral imaging. Processes range from pixel to nano-scale structures and exploit both optical interferences and photonics.

WA.4 • 08:50

Angularly Tunable Bandpass Filter: Design, Fabrication and Characterization, Julien H. Lumeau¹, Fabien Lemarchand¹, Thomas Begou¹, Detlev Arhilger², Harro Hagedorn²; ¹Institut Fresnel - UMR 7249 – CNRS, France; ²Bühler, Germany. We demonstrate an angularly tunable bandpass filter. Central wavelength is changed from 970 nm down to 880 nm when angle of incidence is change from 0 to 50°. Design, fabrication and characterization procedures are presented.

WA.5 • 08:55

Linearly Variable Filters Fabricated by Magnetron Sputtering Technology, Thomas Begou¹, Frederic Lemarquis¹, Antonin Moreau¹, Fabien Lemarchand¹, Holger Reus², Detlev Arhilger², Harro Hagedorn², Julien H. Lumeau¹; ¹Fresnel Institut, France; ²Bühler Leybold Optics, Germany. In this paper, we present the fabrication of linearly variable filters deposited by magnetron sputtering, using a Bühler HELIOS machine. Filters present a continuous shift of the central wavelength from 500 nm to 900 nm over 10 mm aperture.

WA.6 • 09:00

Linear Variable Bandpass Filter for Hyper-spectral Imaging Camera in Agriculture Applications, Shigeng Song¹, Des Gibson¹; ¹Univ. of the West of Scotland, UK. Linear Variable Passband Filters were used to develop a prototype of portable, low-cost Hyper Spectral Crop Camera that demonstrated good spectral performances and disease detection capabilities in crops (based on spectral responses).

WA.7 • 09:05

High-resolution Optical Broadband Monitoring for the Production of Miniaturized Thin-film Filters, Florian Carstens¹, Henrik Ehlers¹, Sebastian Schlichting¹, Lars Jensen^{1,2}, Detlev Ristau^{1,2}; ¹Laser Zentrum Hannover e.V., Germany; ²PhoenixD, Leibniz Universität Hannover, Germany. To increase the accuracy of layer thicknesses in the production of miniaturized thin-film filters controlled by optical broadband monitoring, a high-resolution monitoring system was developed and evaluated by coating simulations and experiments.

WA.8 • 09:10

The Error Self-compensation Effect in the Broadband Monitoring of Multiband Filters, Xiaochuan Ji^{1,5}, Jinlong Zhang^{1,5}, Xinbin Cheng^{1,5}, Zhanshan Wang^{1,5}, Ivan Matvienko², Temur Isaev³, Alexander V. Tikhonravov⁴; ¹*MOE Key Laboratory of Advanced Micro-Structured Materials, Tongji Univ., China;* ²*Skolkovo Inst. of Science and Technology* (*Skoltech*), *Russian Federation;* ³*Department of Physics, Moscow State Univ., Russian Federation;* ⁴*Research Computing Center, Moscow State Univ., Russian Federation;* ⁵*Inst. of Precision Optical Engineering, School of Physics Science and Engineering, China.* The paper investigates production of the multiband filter by broadband monitoring. A special 4-line filter was designed and the simulation demonstrated the layer thickness errors self-compensation effect that was quite significant.

WA.9 • 09:15

Hybrid Mode Optical Monitoring – Monochromatic and Broadband Algorithms in the same Coating Process, Stephan Waldner¹, Jürgen Buchholz¹, Rico Benz¹; ¹Evatec Ltd., Switzerland. Broadband monitoring with high signal quality enables using both broadband and monochromatic layer termination algorithms in the same coating run. Examples of a bandpass filter and an absorbing layer show the benefits of this "hybrid" approach.

WA.10 • 09:20

Monochromatic and Broadband Optical Monitoring for Deposition of Band Pass Filters, Binyamin Rubin¹, Jason George¹, Sandeep Kohli¹, Kyle Godin¹, Riju Singhal¹, David Deakins²; ¹*Veeco, USA*; ²*Meliora, USA*. Applications of monochromatic and broadband optical monitoring methods for deposition of different types of bandpass filters are considered. We demonstrate how optical monitoring system performance can be matched to filter specifications.

WA.11 • 09:25

Broadband Optical Endpoint Monitoring with Virtual Deposition System, Michael Chesaux¹, Dino Deligiannis¹, ¹Intlvac, Inc, Canada. Hybrid broadband endpoint monitoring system with integrated virtual deposition process capability for optical multilayer monitoring. The technique was demonstrated on an ion assisted reactive sputtering system.

09:30-10:00 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

10:00-11:00

WB • Magnetron Sputtering

Presiders: Roland Loercher; Carl Zeiss AG, Germany and Daniel Poitras; National Research Council of Canada, Canada

WB.1 • 10:00 Invited

Consumer Electronics Industry Demands on Optical Coatings and Equipment, Harro Hagedorn¹, Detlev Arhilger¹, Jens-Peter Biethan¹, Thomas Hegemann¹, Martin Stapp¹; ¹Bühler Leybold Optics, Germany. We discuss the coating industry needs for equipment for the past 45 Years. Recent developments for sensor application in consumer electronic products regarding direct coating of CMOS and glass wafer with interference filters are presented.

WB.2 • 10:25

Freeform and Laser Optical Coatings by Inline Magnetron Sputtering, Daniel Gloess¹, Ullrich Hartung¹, Andy Drescher¹, Peter Frach¹, Hagen Bartzsch¹; ¹*Fraunhofer FEP, Germany.* The upscaling of highly productive inline magnetron sputtering for precision optics and application examples like 1D and 2D lateral thickness gradients as well as laser mirrors will be presented.

WB.3 • 10:30

Mechanical and Thermal Properties of Si/SiO₂ Narrow-band Mid-infrared Filters for Space Applications, Anna Sytchkova¹, Bill Baloukas², Oleg Zabeida², Angela Piegari¹, Jolanta-Ewa Klemberg-Sapieha², Maria Luisa Grilli¹, Ludvik Martinu²; ¹Energy Department, ENEA Optical Coatings Group, Italy; ²FCSEL Engineering physics, Polytechnique Montreal, Canada. The residual stress compensation of Si/SiO₂ narrow-band filters for the mid-infrared range, composed of a combination of a Fabry-Perot and a blocking filter, is studied.

WB.4 • 10:35

Low Loss, Plasma Beam Assisted Reactive Magnetron Sputtered Silicon Nitride Films for Optical Applications, Andreas Frigg^{1,2}, Andreas Boes¹, Guanghui Ren¹, Duk-Yong Choi³, Silvio Gees², Arnan Mitchell¹; ¹*RMIT Univ., Australia*; ²*Evatec Ltd, Switzerland*; ³*Australian National Univ., Australia.* CMOS-compatible SiN layers with ultra-low roughness were deposited using plasma beam assisted reactive sputtering. Material losses below 0.1 dB/cm making it a promising deposition method for photonic integrated circuits and multilayer coatings.

WB.5 • 10:40

Multiple Bandpass Filters with Magnetron Sputtered Amorphous Silicon as High Index Materia, Penghui Ma¹; ¹National Research Council Canada, Canada. Multiple bandpass filters for very wide wavelength range are made with sputtered amorphous silicon and SiO2. Such difficult filters are possible only if we have good control of the optical properties and the processes.

WB.6 • 10:45

Volume Production of High Quality Optical Coatings by Plasma Assisted DC-Magnetron Sputtering (PAPMS), Ralf T. Faber¹; ¹Vacuum Process Technology, LLC, USA. Plasma Assisted Pulsed DC Magnetron Sputtering (PAPMS) results in low loss, high performance optical coatings. Multilayers using metals and metaloxides demonstrate that this technology is suitable for volume production of complex high quality coatings.

WB.7 • 10:50

Comparative Study of Bandpass Filters Manufactured by Different Deposition Technologies, Antonin Moreau¹, Tomas Begou¹, Fabien Lemarchand¹, Frederic Lemarquis¹, Karine Mathieu², Julien H. Lumeau¹; ¹Institut Fresnel - UMR 7249 – CNRS, France; ²CNES, France. We perform a comparative study of the performances of thin-film bandpass filters fabricated using plasma assisted reactive magnetron sputtering and electron beam deposition. Design, fabrication and characterization of such filters are presented.

WB.8 • 10:55

Manufacturing of Unusual Optical Filter Possessing Stepwise Spectral Transmittance, Kazuki Sato¹, Hiroaki Higuchi¹, ¹Asahi Spectra Co., Ltd., Japan. We have manufactured an optical filter possessing stepwise spectral transmittance by magnetron sputtering method. There is good agreement between designed and measured transmittance. We expect the actual thickness is close to the design thickness.

11:00-12:00 • WAB • Wednesday Morning Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

WA.2	WB.2
WA.3	WB.3
WA.4	WB.4
WA.5	WB.5
WA.6	WB.6
WA.7	WB.7
WA.8	WB.8
WA.9	
WA.10	
WA.11	

12:00-13:30 • Conference Lunch, Cottonwoods Pavilion and Patio

13:30-14:40

WC • Manufacturing Problem and Stress in Coatings

Presiders: Ekishu Nagae; Shincron Co., Ltd., Japan and Wolfgang Rudolph; Univ. of New Mexico, USA

WC.1 • 13:30 Invited

OIC 2019 Manufacturing Problem Contest, Daniel Poitras¹, Li Li¹, Michael R. Jacobson², Catherine Cooksey³; ¹National Research Council Canada, Canada; ²Optical Data Associates, USA; ³Optical Radiation Group, National Inst. of Standards and Technology, USA. A filter with specified transmittance at 10° and 50° angles of incidence (s-pol) from 400 to 1100 nm is selected for the OIC 2019 Manufacturing Problem. The results will be presented at the OIC conference.

WC.2 • 14:00

Stress Compensation by Deposition of a Nonuniform Corrective Coating, James B. Oliver¹, John Spaulding¹, Brian Charles¹; ¹Univ. of Rochester, USA. Surface deformation by coating stress is compensated by prefiguring the substrate with a radially nonuniform layer. Stresses in the compensation layer and reflector are modeled using finite-element analysis to determine the desired thickness profile.

WC.3 • 14:05

Quantitative Calculation of Substrate Bending Caused by Multilayer Thin Film Stress, Muneo Sugiura¹, Koichi Tamura¹, Mitsunobu Kobiyama²; ¹*Tokai Optical Co., Ltd., Japan;* ²*Tecwave Co., Ltd., Japan.* Substrate bending by multilayer coating of Ta₂O₅/SiO₂ has been investigated quantitatively. By introducing fitting parameters to modified Stoney's formula, the amount of the bending has been calculated to accuracies of less than at 633nm.

WC.4 • 14:10

Improving Film Stress and Surface Roughness by Using a Plasma Source in Magnetron Sputtering, Silvia Schwyn Thöny¹, Silvio Gees¹, Edmund Schuengel¹; ¹Evatec Ltd, Switzerland. Equipping a magnetron sputter deposition system with an additional plasma source allows to improve surface roughness and film stress independent of the sputter parameters. This will be shown at the example of HfO₂/SiO₂ mirrors and aSi:H single layers.

WC.5 • 14:15

Ultra-low Stress SiO₂ **Ion Beam Deposition Coatings,** Emmett Randel¹, Aaron Davenport¹, Ashot Markosyan², Martin M. Fejer², Riccardo Bassiri², Carmen S. Menoni¹; ¹Colorado State Univ., USA; ²Stanford Univ., USA. Ion beam deposition (IBD) films typically have high compressive stress. By using low energy primary source and high energy assist source with an O₂ plasma the compressive stress of SiO₂ can significantly be reduced.

WC.6 • 14:20

Precisely Stress Compensated Dielectric Laser Mirrors Deposited by PARMS on Thin Deformable Substrates, Jan Brossmann¹, Marc Lappschies¹, Stefan Jakobs¹; ¹Optics Balzers Jena GmbH, Germany. Coated optical components with low surface form deviation require particular knowledge on thin-film stress. Contributing factors to stress in PARMS coatings are evaluated and results of laser mirrors, deposited on thin substrates, are presented.

WC.7 • 14:25

Investigation of the Anisotropic Stress and Optoelectronic Properties of MZO Film Deposited on Flexible Substrate with RF Magnetron Sputtering, Hsi-Chao Chen¹, Guan-Ting Peng¹, Tan-Fu Liu¹, Ru-Fong Lal¹, Min-Yi Jiang¹, Pin-Ju Yao¹, Ming H. Yen¹, Chun-Hao Chang¹; ¹National Yunlin Univ of Sci. and Tech., Taiwan. The Mo-doped ZnO (MZO) thin films were deposited with RF magnetron sputtering on PET and PC flexible substrates with different substrate temperature and oxygen pressure. The anisotropic stress and optoelectronic properties were investigated.

WC.8 • 14:30

Stress-less Hard Film with High Hardness, Small Surface Roughness and Low Stress, Shiliu Yin¹, Mitsuhiro Miyauchi¹, Tuteng Ma¹, Yosuke Inase¹, Takuya Sugawara¹, Ekishu Nagae¹; ¹Shincron Co., Ltd, Japan. Here we report newly developed stress-less hard coating prepared with radical-assisted sputtering. Multilayered film stack shows comparable hardness and better balance of stress and roughness with SLH replacing conventional Si₃N₄ as high-index layers.

WC.9 • 14:35

Investigation of the Anisotropic Stress of the Anti-reflector Multilayer Film Deposited on PET Flexible Substrate, Chun-Hao Chang¹, Hsi-Chao Chen¹, Yu-Ru Lu¹, Sheng-Bin Chen¹, Cheng-Xuan Wu¹, Ching-Chieh Hung¹; ¹National Yunlin Univ of Sci. and Tech., Taiwan. The anti-reflection (AR) multilayer films of TiO₂/SiO₂ and Ta₂O₅/SiO₂ were deposited on PET substrate with e-gun evaporation. A phase shifting moiré interferometer with Mohr's circle method was used to measure the anisotropic residual stress.

14:40—15:15 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

15:15-16:05

WD • Sputtered Coatings and Uniformity

Presiders: Vladimir Pervak; Ludwig-Maximillians-Universität Munchen, Germany and Brian Sullivan; Iridian Spectral Technologies, Ltd, Canada

WD.1 • 15:15 Invited

Challenges in Depositing and Characterizing Large Precision Filters for the LSST, Robert W. Sprague¹; ¹*Materion Precision Optics, USA*. The Six filters used for the Large Synaptic Survey Telescope (LSST) are **~750 mm** precision optics. We report the development of a spectrometer to directly map the transmission of these curved filters.

WD.2 • 15:40

Characterization of Silicon Oxynitride Films Deposited by HIPIMS Deposition Technique, Bohuei Liao¹, Chien-Nan Hsiao¹, Ming-Hua Hsiao¹, Shih-Hao Chan², Sheng-Hui Chen², Sheng-De Weng¹; ¹Instrument Technology Research Center, Taiwan; ²National Central Univ., Taiwan. Silicon oxynitride films were prepared by high-power impulse magnetron sputtering. The average transmittance of the SiON films on the glass in the visible range was 86 % and its hardness was 24 Gpa.

WD.3 • 15:45

Ion Beam Sputtering of Optical Coatings for InP- and GaAs-based Laser Diodes, Matthias Falmbigl¹, Sandeep Kohli¹, Riju Singhal¹, Jason George¹; ¹Veeco Instruments Inc, USA. We report on the performance of ion beam deposited optical coatings for laser diodes. Our results demonstrate a precise control of deposition conditions to tailor thin film properties for anti-reflective and high-reflective coatings.

WD.4 • 15:50

Improvement of Uniformities of Thickness and Incident Angles of Particles by Swinging Rotation Motion on Reactive Sputtering Deposition, Masahiro Akiba¹; ¹Topcon Corporation, Japan. On reactive magnetron sputtering, we developed swinging rotation motion. It improves uniformities of thickness and incident angles of particles. The uniformities and the area size are easily adjustable with the range of the swinging motion.

WD.5 • 15:55

Complex IBS Coatings on Curved Surfaces, Tammo Bontgen¹, Lars Jensen¹, Marc Neufert¹; ¹Laser Zentrum Hannover e.V., Germany. We explore a technique to precisely engineer the uniformity of a coating on non-flat substrates. This allows deposition of complex coatings such as edge filters by limiting the effects of spectral shift and angular spread.

WD.6 • 16:00

Deposition of Demanding Optical Coatings on Curved Substrates, Michael Vergoehl¹, Chris Britze¹, Stefan Bruns¹, Andreas Pflug¹, Volker Kirschner², ¹Fraunhofer Institut, *Germany*, ²European Space Reseach and Technology Centre, Netherlands. A band pass filter with a broad blocking on the convex side of a lens with constant central wavelength across the surface was produced with the EOSS machine. The shape of masks was designed with the PIC-MC code using 3D plasma simulation.

16:05-17:30 • WCD • Wednesday Afternoon Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

WC.2	WD.2
WC.3	WD.3
WC.4	WD.4
WC.5	WD.5
WC.6	WD.6
WC.7	
WC.8	
WC.9	

18:00-20:00 • Conference Banquet, Cottonwoods Pavilion and Patio

08:00—17:30 • **Registration**, Tamaya Ballroom Lobby

Tamaya Ballroom ABCD

08:15-09:30

ThA • Coatings for Lasers and Laser Damage

Presiders: Carmen Menoni; Colorado State Univ., USA and Robert Sprague; Materion Precision Optics, USA

ThA.1 • 08:15 Invited

Trends Observed in Ten Years of Thin Film Coating Laser Damage Competitions, Christopher J. Stolz¹, Raluca A. Negres¹, Eyal Feigenbaum¹; ¹Lawrence Livermore National Laboratory, USA. Optimum material selection for high fluence interference coatings is wavelength dependent (increased bandgap with decreased wavelength) whereas the deposition process depends on pulse length (increased densification with decreased pulse length).

ThA.2 • 08:40

Large-aperture Coatings for Fusion-class Laser Systems, James B. Oliver¹, Amy Rigatti¹, Tom Noll¹, John Spaulding¹, Jeff Hettrick¹, Vern Gruschow¹, Gary Mitchell¹, Dan Sadowski¹, Christopher Smith¹, Brian Charles¹, ¹Univ. of Rochester, USA. Optical coatings for fusion lasers pose unique challenges, given the large substrate sizes, high intensities, and system-focusing requirements. Deposition processes are described for producing these components.

ThA.3 • 08:45

Temporal Dependency of Llaser Damage on Dielectric Mirrors for Petawatt Applications in the Picosecond Regime, Alexandre Ollé^{1,2}, Jacques Luce¹, Nadja Roquin¹, Claude Rouyer¹, Martin Sozet¹, Laurent Gallais², Laurent Lamaignère¹; ¹*CEA*, *France; ²Institut Fresnel, France.* We report on the impact the pulse duration has on the Laser Induced Damage Threshold (LIDT) and on defects initiated damage for dielectric mirrors irradiated by picosecond pulses.

ThA.4 • 08:50

High Laser-induced Damage Threshold Mirrors Prepared by EPD, Tuteng Ma¹, Mitsuhiro Miyauchi¹, Shiliu Yin¹, Takayuki Matsudaira¹, Ekishu Nagae¹; ¹SHINCRON Co., Ltd, Japan. High laser-induced damage threshold of 1064nm mirror prepared by the EPD system using SiO₂/Ta₂O₅. The LIDT value obtained 303.5J/cm² which is 4 times better than the 70.7J/cm² result prepared by the conventional IAD equipment.

ThA.5 • Moved to Tuesday, 3 June, TC.10

ThA.6 • 09:00

High Power Properties of Low Density Nano-columnar SiO2 Films for All-silica Mirrors, Phyo P. Lin¹, Joesph A. Randi², Sage DeFrances², Dave Bernot², Joseph Talghader¹; ¹Univ. of Minnesota, USA; ²Pennsylvania State Univ., USA. SiO2 nano-columnar films were fabricated using oblique angle deposition and characterized for their optical and mechanical properties. The films showed high damage thresholds, low scattering and intriguing transition to low stress at lower densities.

ThA.7 • 09:05

The Difference of Laser-induced Damage Behaviors between the Back and Front Surface, Bin Ma¹, Ke Wang¹, Jiaqi Han¹, Xinbin Cheng¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* The transient images of ejected particles, plasma shapes and morphologies of damage craters are presented to characterize the different damage processes of the back and front surface under 1064 nm laser irradiation.

ThA.8 • 09:10

Study of Downstream Impacts Induced by Defects of Sol-gel Antireflection Layers in High Power Lasers, Eric A. Lavastre¹, Julien Iriondo¹, Florian Tournemenne¹, Stéphane Bouillet¹, Romain Parreault¹, Laurent Lamaignère¹, Claude Rouyer¹; ¹Commissariat a l'Energie Atomique, France. Downstream impact induced by defects of sol-gel antireflection layers is studied in the high power lasers context. First results of propagation and laser damage tests are presented about defects dimensionally similar but morphologically different.

ThA.9 • 09:15

Recommendations on Laser Damage Testing of Monolayers in Short Pulse Regime to Determine Accurate Intrinsic LIDT, Marine Chorel¹, Eric A. Lavastre¹, Thomas Lanternier¹, Bruno Bousquet², Jerome Daurios¹, Jerome Neauport¹; ¹*CEA*, *France*; ²*Bordeaux Univ., France*. By determining and evaluating the uncertainties on the LIDTint, we are able to recommend the best configuration to laser damage test monolayers in short pulse regime.

ThA.10 • 09:20

Dry Etching of HfO₂ and SiO₂ Optical Thin Films, Lingyun Xie^{1,2}, Huasong Liu³, Jun Zhao⁴, Hongfei Jiao^{1,2}, Jinlong Zhang^{1,2}, Zhanshan Wang^{1,2}, Xinbin Cheng^{1,2}, ¹*MOE Key* Laboratory of Advanced Micro-Structured Materials, China; ²Inst. of Precision Optical Engineering, School of Physics Science and Engineering, Tongji Univ., China; ³Tianjin Jinhang Inst. of Technical Physics, China; ⁴Shanghai Inst. of Applied Physics, CAS, China. HfO₂ and SiO₂ optical thin films were etched using IBE, RIE and ICPE techniques. The influence of reactive gas and ion bombardment energy on the etching rates and surface morphologies of these two coatings was comparatively studied.

ThA.11 • 09:25

Laser Coatings for ps Applications on Large Optics, Patrick Robert¹, Cédric Cammarata¹, Chantal Germain¹, Rob Clarke²; ¹Thales SESO, France; ²STFC Rutherford Appleton Laboratory, UK. Lasers tend to have pulses duration going down to ps or even fs range. These applications require large optics (class 1m or above) for which Thales SESO has developed a coating technology withstanding 2J/cm2.

09:30-09:55 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

09:55—10:00 • In Memoriam: Mireille Commandré, Tamaya Ballroom EFGH

10:00-11:00

ThB • Nonlinear and Ultrafast Coatings

Presiders: Xinbin Cheng; Tongji Univ., China and Detlev Ristau; Laser Zentrum Hannover e.V., Germany

ThB.1 • 10:00 Invited

Nonlinear Optics Using Interference Coatings - Opportunities and Challenges, Wolfgang Rudolph¹, Amir Khabbazi Oskouei¹, Luke A. Emmert¹, Morten Steinecke², Marco Jupé², Lars Jensen², Detlev Ristau²; ¹Univ. of New Mexico, USA; ²Laser Zentrum Hannover, Germany. Interference coatings for nonlinear optical applications, mainly third harmonic generation, is discussed. An inverse relationship between bandwidth and efficiency was found. Challenges arise from undesired processes that occur at high intensities.

ThB.2 • 10:25

Design and Conversion Scaling Laws of Frequency Tripling Mirrors Based on Dielectric Coating Stacks, Amir Khabbazi Oskouei¹, Luke A. Emmert¹, Wolfgang Rudolph¹, Morten Steinecke², Marco Jupé², Lars Jensen², Detlev Ristau², ¹Univ. of New Mexico, USA; ²Laser Zentrum Hannover e.V., Germany. The general architecture of frequency tripling mirrors with optimized conversion is discussed for different design criteria. The conversion and bandwidth of the mirrors are strong functions of the number of layers.

ThB.3 • 10:30

Design and Fabrication of Single, Smooth and Broadband Chirped Mirrors with a Top Nano-porous Layer, Penghui Ma¹, Adriana Szeghalmi², Ulrike Schulz², Friedrich Rickelt², Vivek Beladiya³, Peter Zimmermann⁴, Li Li¹; ¹National Research Council Canada, Canada; ²Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany; ³Friedrich Schiller Univ., Inst. of Applied Physics, Germany; ⁴Layertec, Mellingen, Germany. The design and fabrication results of single, low-ripples and broadband chirped mirrors with an integrated nano-porous layer using two different processes, atomic layer deposition and plasma etching, will be presented.

ThB.4 • 10:35

Broadband Phase-shifting Mirrors for Ultrafast Lasers, Tatiana Amotchkina¹, Lukas Lehnert², Keyhan Golyari², Marcus Ossiander², Martin Schultze¹, Vladimir Pervak¹, Michael K. Trubetskov²; ¹Ludwig-Maximilians-Univ. Munich, Germany; ²Max-Planck-Institut für Quantenoptik, Germany. Metal dielectric phase-shifting optical elements have been developed providing broadband, virtually dispersion free polarization manipulation down to the single optical cycle level.

ThB.5 • 10:40

Broadband Si/SiO₂ Dispersive Mirrors for Ultrafast Mid-infrared Lasers, Vladimir Pervak¹, Tatiana Amotchkina¹, Qing Wang², Oleg Pronin¹, Ka Fai Mak², Michael K. Trubetskov²; ¹Ludwig-Maximillians-Universität Munchen, Germany; ²Max Plank Insitute of Quantum Optics, Germany. We report Si/SiO₂ mirrors operating in the spectral range 2-3.2 um. The coatings exhibit high reflectance and provide GDD of (-100 fs²) and (-200 fs²). The mirrors are key elements of Cr:ZnS/Cr:ZnSe femtosecond lasers and oscillators.

ThB.6 • 10:45

Improved Optical Resistance of Broadband Chirped Mirrors, Simas Melnikas^{1,3}, Simonas Kičas¹, Andrius Melninkaitis², ¹Ctr for Physical Sciences & Technology, Lithuania; ²Laser Research Center, Vilnius Univ., Lithuania; ³Altechna Coatings, Lithuania. Chirped mirrors covering 200 nm bandwidth were deposited for laser-induced damage threshold (LIDT) testing. Coating designs were optimized to achieve better LIDT performance. After LIDT testing morphology of damage sites was analyzed.

ThB.7 • 10:50

High Dispersive Mirrors for Femtosecond Laser System, Yanzhi Wang¹, Ruiyi Chen¹, Kesheng Guo¹, Yuhui Zhang¹, Meiping Zhu¹, Kui Yi¹, Jianda Shao¹, ¹Shanghai Inst. of Optics and Fine Mechanics, China. We propose an initial multilayer structure to design high dispersive mirror (HDM) and aim at introducing large group delay dispersion (GDD). In film deposition, based on the uniformity, a HDM pair reduce the GDD oscillation effectively.

ThB.8 • 10:55

Laser Induced Thermal Stress in Optical Thin Films,, Austin Firth¹, Uma Srinivasan¹; ¹Optics R&D, Coherent Inc., USA. Thermal stress of optical thin film materials SiO₂, HfO₂, Al₂O₃, TiO₂, and MgF₂ exposed to laser pulse is simulated using 2D finite element method. Thermal stress is compressive and MgF₂ film has the least value.

11:00-12:00 • ThAB • Thursday Morning Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

ThA.2	ThB.2
ThA.3	ThB.3
ThA.4	ThB.4
ThA.6	ThB.5
ThA.7	ThB.6
ThA.8	ThB.7
ThA.9	ThB.8
ThA.10	
ThA.11	

12:00–13:30 • Conference Lunch, Cottonwoods Pavilion and Patio

13:30-14:40

ThC • Characterization I

Presiders: Claude Amra; CNRS, France and Michael Jacobson; Optical Data Associates, USA

ThC.1 • 13:30 Invited

OIC 2019 Measurement Problem, Sven Schröder^{1,} Angela Duparré¹, Detlev Ristau², Marcus Trost¹; ¹Fraunhofer IOF, Germany; ²LZH, Germany. The Measurement Problem comprises the determination of the total backscattering, forward scattering, reflectance, and transmittance spectra of a multilayer system.

ThC.2 • 14:00

Residual Stress Birefringence Measurements of Highly Reflective Mirrors with Cavity Ring-down Technique, Shilei Xiao¹, Bincheng Li¹, Jing Wang¹, ¹Univ of Electronic Science & Tech China, China. Residual stress birefringence of highly reflective mirrors structured with different HL layer numbers were measured with cavity ring-down technique by mirror rotation method and a differential loss approximation model.

ThC.3 • 14:05

Optical Characterization of High Refractive Index Glass Wafers for Augmented Reality Wearables, Jue Wang¹, Michael J. Cangemi¹, Jean Francois Oudard¹, Alex Bean¹, Tom Dunn¹, Chris A. Lee², Deanna A. Moschitta², Michael M. Moore², Nicholas M. Walker², Michael Kapusta², Karl W. Koch²; ¹*Corning Advanced Optics, USA*; ²*Corning, USA*. Refractive index and optical thickness homogeneities of 99.979% and 99.984% were determined by using wafer-size metrologies. SiO₂ & Nb₂O₅ based low loss anti-reflective coatings in the visible were realized for augmented reality wearables.

ThC.4 • 14:10

Dual-angle Imaging System (DAISy) for Determining the Thickness of a Dielectric Thin Film, Yang Deng¹, Diana Magana¹, Zheng Tan¹, Jennifer D. Kruschwitz¹; ¹Univ. of *Rochester, USA*. A team of undergraduate engineers in Optics were tasked to build a Dual-Angle Imaging System (DAISy) to measure the physical thickness of a dielectric film on silicon. This paper details their working prototype design.

ThC.5 • 14:15

Ellipsometric Modeling of Serially Bi-deposited Glancing-angle–deposition Coatings, Chris Smith¹, Sara MacNally¹, James B. Oliver¹; ¹Univ. of Rochester, USA. Ellipsometric modeling of serially bi-deposited glancing-angle–deposition (GLAD) coatings with a high degree of accuracy is imperative for multilayer coatings. High-precision dispersion curves are demonstrated for a wide variety of applications.

ThC.6 • 14:20

In Situ and Ex Situ Spectroscopic Ellipsometry of Electrochromic NiO Films, Louis Dubé-Riopel¹, Bill Baloukas¹, Oleg Zabeida¹, Ludvik Martinu¹; ¹Polytechnique Montreal, Canada. In situ ellipsometric measurements during cyclic voltammetry, supported by ex situ measurements, allow for the precise and continuous characterization of the optical properties of electrochromic NiO films in their various states of coloration.

ThC.7 • 14:25

Electric Field Assisted Dissolution of Nano-composite Coatings: An Spectroscopic Ellipsometric Study, Jordi Sancho-Parramon¹, Boris Okorn¹, Vesna Janicki¹; ¹Institut Ruder Boskovic, Croatia. Application of DC voltage and moderate temperature induces dissolution of metal nanoparticles in nanocomposite materials. Ellipsometry is used to monitor changes in multilayer nanocomposite coatings as the dissolution process takes place.

ThC.8 • 14:30

Ellipsometry-based Study of Poled Glass Refractive Index Depth Profiles, Vesna Janicki¹, Ivana Fabijanic¹, Petar Pervan¹, Boris Okorn¹, Jordi Sancho-Parramon¹; ¹Institut Ruder Boskovic, Croatia. Glass poling changes composition of the treated glass depleting the side facing anode from alkali species naturally present in glasses. The resulting change of the treated glass refractive index profiles was studied using ellipsometry.

ThC.9 • 14:35

How Thin an Optical Coating? The Case of Atomic Layer Deposited TiO₂ on Native Oxide/Si, Marcelo B. Pereira¹, Gustavo R. Toniello¹, Klester S. Souza¹, Flavio Horowitz¹; ¹Univ Federal do Rio Grande do Sul, Brazil. A spectrally-extended Abelès method was used for probing ALD deposited TiO₂ films on native oxide/Si, whose AFM imaged nanotopology was roughly followed. Cauchy fitting to the experimental data was possible until ~1/10 quarterwave optical thickness.

14:40-15:15 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

15:15-16:20

ThD • Characterization II

Presiders: Henrik Ehlers; Laser Zentrum Hannover e.V., Germany and Ric Shimshock; MLD Technologies, LLC, USA

ThD.1 • 15:15 Invited

Characterization of Transmittance, Reflectance and Optical Scattering of High-performance Interference Filters in the Visible and Near-infrared Spectral Regions, Myriam Zerrad¹, Michel Lequime¹, Claude Amra¹; ¹Institut Fresnel, France. SALSA instrument allows an ultimate metrology of transmittance, reflectance and scattering functions of high performance optical coatings in the visible & near infrared range. Accuracy of measurements emphasizes an excellent agreement with the models.

ThD.2 • 15:40

Assessment of Surface Roughness, Homogeneity, and Defects of Substrates and Coatings for Space Applications, Tobias Herffurth¹, Marcus Trost¹, Ralph Schlegel¹, Stefan Schwinde¹, Sven Schröder¹; ¹Fraunhofer IOF, Germany. Substrates and coatings for optical components are characterized using light scattering techniques. A robotic light scattering sensor enables curved samples with extended geometries to be mapped regarding roughness, homogeneity, and defects.

ThD.3 • 15:45

Simulation of Scattering from Nodules with Different Structures, Haoran L1^{1,2}, Lei Zhang^{1,2}, Jinlong Zhang^{1,2}, Sven Schröder³, Marcus Trost³, Hongfei Jiao^{1,2}, Zhanshan Wang^{1,2}, Xinbin Cheng^{1,2}; ¹*Key Laboratory of Advanced Micro-structure Materials, Ministry of Education, China;* ²*Inst. of Precision Optical Engineering, School of Physics Science and Engineering, Tongji Univ., China;* ³*Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany.* The scattering of nodules with different geometric constants were simulated. When the constant *C* is 8, the scattering intensity of each nodule is over 50 ppm. However, the intensity does not increase monotonically with bigger nodular geometry.

ThD.4 • 15:50

Optical Characteristics of Low-refractive-index Optical Thin Films Fabricated by Sputtering and Electron-beam Vacuum Deposition, Mai Hayamizu¹, Yoshiki Tsuno¹, Hiroshi Murotani¹, Shigeharu Matsumoto²; ¹*Tokai Univ., Japan*; ²*Shincron Co., Ltd, Japan.* Low-refractive-index thin films with porous structures were fabricated by simultaneous sputtering and electron-beam vacuum deposition. This optical thin films can withstand ultrasonic cleaning which are having practical mechanical properties.

ThD.5 • 15:55

Mechanical Properties of Low-refractive-index SiO₂ Optical Films, Xiangyu Lu¹, Kenji Masuyama¹, Yoshiki Tsuno¹, Kei Yoshizawa¹, Hiroshi Murotani¹, Shigeharu Matsumoto²; ¹*Tokai Univ., Japan;* ²*Shincron Co., Ltd, Japan.* SiO2 optical thin films deposited by a combination coating method achieved a low refractive index and high durability.

ThD.6 • 16:00

Design and Fabrication of Reflective Notch Filter Using Modified Thickness Modulated Al₂O₃ – SiO₂ Multilayer, Mukesh Kumar^{1,2}, Neelam Kumar^{1,2}, Amit L. Sharma¹, Vinod Karar¹, Ravindra K. Sinha¹; ¹*CSIR-CSIO, India*; ²*Academy of Scientific & Innovative Research, India*. A 44 layer thickness modulated Al₂O₃ – SiO₂ multilayer structure has been designed and fabricated using Ion Assisted electron-beam Deposition technique and it was characterized for its reflectance at angle of incidence of 45° using spectrophotometer.

ThD.7 • 16:05

Trapped Light Scattering within Optical Multilayers, Claude Amra¹, Myriam Zerrad^{1,2}, Michel Lequime^{1,3}; ¹Institut Fresnel, CNRS, France; ²Aix Marseille Univ, France; ³Ecole Centrale Marseille, France. We calculate the amount of trapped scattering within complex filters. This trapped light is carried by guided modes and results from a roughness-coupling effect. It is shown how it may dominate the far field scattering.

ThD.8 • 16:10

Measuring and Reducing of Cracks of Sol-gel Layers of Optical Components Having a High Damage Laser Threshold, Hervé Piombini¹, Jérémy Avice¹, Christophe Boscher¹; ¹CEA Le Ripault, France. The Laser MégaJoule needs optical components which are coated by sol gel with a post-treatment. This process induces crazing. We present the characterizations to understand the phenomenon and suggest leads to solve this problem.

ThD.9 • 16:15

Results of Indentation of Thin Layers Manufactured by a Sol-gel Process., Hervé Piombini¹, Philippe Belleville¹, Clément Sanchez²; ¹*CEA Le Ripault, France;* ²75, *Collège de France, France, France,* We introduce our indenter allowing the carrying out of measurements on transparent material having a weak Young's modulus and to identify whether our material have a self-repairing effect.

16:20-17:30 • ThCD • Thursday Afternoon Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

ThC.2	ThD.2
ThC.3	ThD.3
ThC.4	ThD.4
ThC.5	ThD.5
ThC.6	ThD.6
ThC.7	ThD.7
ThC.8	ThD.8
ThC.9	ThD.9

08:00-11:00 • Registration, Tamaya Ballroom Lobby

Tamaya Ballroom ABCD

08:15-09:25

FA • Coatings for Gravitational Wave Detection

Presiders: Des Gibson; Univ. of the West of Scotland, UK and Laurent Pinard; CNRS-IN2P3, France

FA.1 • 08:15 Invited

Progress in the Measurement and Reduction of Thermal Noise in Optical Coatings for Gravitational-wave Detectors, Massimo Granata¹, Alex Amato¹, Gianpietro Cagnoli², Matthieu Coulon¹, Jérôme Degallaix¹, Danièle Forest¹, Lorenzo Mereni¹, Christophe Michel¹, Laurent Pinard¹, Benoît Sassolas¹, Julien Teillon¹; ¹Laboratoire des Matériaux Avancés, France; ²Université de Lyon, France. We report on the research activity on low-thermal-noise coatings at the Laboratoire des Matériaux Avancés, from updated values for the current coatings of Advanced LIGO, Advanced Virgo and KAGRA to recent results from alternative sputtered coatings.

FA.2 • 08:40 Invited

Apparatus to Measure Optical Scatter of Coatings Versus Annealing Temperature, Joshua Smith¹, Rana Adhikari², Katerin Aleman¹, Adrian Avila-Alvarez¹, Garilynn Billingsley², Amy Gleckl¹, Jazlyn Guerrero¹, Ashot Markosyan³, Steven Penn⁴, Juan Rocha¹, Dakota Rose¹, Robert Wright¹; ¹California State Univ. Fullerton, USA; ²LIGO, California Inst. of Technology, USA; ³Stanford Univ., USA; ⁴Hobart & William Smith Colleges, USA. Light scattered by amorphous thin-film optical coatings limits the sensitivity of interferometric gravitational-wave detectors. We describe an imaging scatterometer to assess the role that crystal growth during annealing plays in this scatter.

FA.3 • 09:05

Assessing Substrate-transferred GaAs/AlGaAs Coatings for Gravitational-wave Detectors, Steven Penn¹, Maya Kinley-Hanlon², Gregory Harry², Ian MacMillan³, Garrett Cole⁴, Paula Heu⁴, David Follman⁴, Christoph Deutsch⁵, ¹Hobart and William Smith Colleges, USA; ²American Univ., USA; ³Georgetown Univ., USA; ⁴Crystalline Mirror Solutions, USA; ⁵Crystalline Mirror Solutions GmbH, Austria. Substrate-transferred, 70-mm diameter AlGaAs coatings were tested for possible use in gravitational wave detectors by measuring the elastic loss $\phi_{bulk} = (5.33 \pm 0.03) \times 10^{-4}$ and $\phi_{shear} = (0.0 + 5.2 - 0.0) \times 10^{-7}$ and excess loss from bonding defects $\approx 5\%$.

FA.4 • 09:10

Gamma Radiation Exposure of Crystalline Coatings for Space Applications, Gar-Wing Truong¹, Kenji Numata², Catherine Nguyen¹, Garrett Cole¹; ¹Crystalline Mirror Solutions, USA; ²NASA/GSFC, USA. The effect of gamma radiation on the optical loss of high reflectivity monocrystalline supermirrors will be presented. These effects will be critical for space applications of low Brownian-noise crystalline mirrors for precision interferometry.

FA.5 • 09:15

Growth and Characterization of Mixed Ta₂O₅ Thin Films by Reactive Biased Target Deposition, Mariana A. Fazio¹, Lilly Quintana Barrera¹, Ashot Markosyan², Riccardo Bassiri², Martin M. Fejer², Carmen S. Menoni¹; ¹Department of Electrical and Computer Engineering and NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State Univ., USA; ²Department of Applied Physics, Ginzton Laboratory, Stanford Univ., USA. We present characterization of tantala films mixed with titania or scandia grown by reactive biased target deposition. The introduction of a dopant significantly affected the optical properties of the films and the crystallization temperature.

FA.6 • 09:20

Optical Properties and Mechanical Loss of Amorphous Ta₂O₅ Thin Films Bombarded with Low Energy Assist Ions, Le Yang¹, Emmett Randel¹, Gabriele Vajente³, Alena Ananyeva³, Eric Gustafson³, Ashot Markosyan², Riccardo Bassiri², Martin M. Fejer², Carmen S. Menoni¹, ¹Colorado State Univ., USA; ²Stanford Univ., USA; ³California Inst. of Technology, USA. Amorphous tantala (Ta₂O₅) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist Ar⁺ or Ar⁺/O₂⁺ bombardment. The films' absorption and mechanical losses are not significantly affected by the ion bombardment.

09:25—10:00 • Coffee Break with Exhibits, Tamaya Ballroom EFGH

10:00-10:50

FB • X-Ray, EUV, and UV Coatings

Presiders: Sven Schröder; ENEA Optical Coatings Lab, Italy; and Anna Sytchkova; ENEA Optical Coatings Lab, Italy

FB.1 • 10:00 Invited

Recent Advances in Cr-based Interference Coatings for EUV and Soft X-ray Optics, Franck Delmotte¹, Catherine Burcklen^{1,2}, Evgueni Meltchakov¹, Regina Soufli^{1,2}, Jennifer Rebellato¹, Arnaud Jérome¹, Sébastien de Rossi¹; ¹Laboratoire Charles Fabry, France; ²Lawrence Livermore Natinal Laboratory, USA. We present recent advances in the development of Chromium-based interference coatings in the EUV/soft x-ray range. We achieved breakthroughs in coating efficiency by using advanced concepts including 3-material multilayers and interface engineering.

FB.2 • 10:25

Thermal and Temporal Stability of Nitridated Ru/B₄C Multilayer for High Flux Monochromator Application, Yang Liu¹, Qiushi Huang¹, Hui Jiang², Runze Qi¹, Yufei Feng¹, Guangzhi Yin², Xingmin Zhang², Zhong Zhang¹, Zhanshan Wang¹; ¹*Tongji Univ., China*; ²*Shanghai Synchrotron Radiation Facility, China*. Nitridated Ru/B₄C multilayers for hard X-ray monochromator were fabricated and annealed to analyze the thermal stability. The results show that the nitridated multilayer remains stable up to 300 °C and no structure changes were observed in 2 years.

FB.3 • 10:30

The Reflectance of the Al+MgF₂ Film in the Far-Ultraviolet, Jinyan Wang¹, Jinlong Zhang¹, Hongfei Jiao¹, Xinbin Cheng¹, Zhanshan Wang¹, ¹*Tongji Univ., China*. The Al mirror protected with a fluoride film was produced, and the effect of the annealing to the reflectance was investigated. It showed the reflectance >85% in the wavelength of 121.6nm has been achieved.

FB.4 • 10:35

Narrowband Mg/SiC Multilayers Working around 30.4 nm, Zhe Zhang¹, Qiushi Huang¹, Qunze Qi¹, Jiaqi Chen¹, Qinxu Feng¹, Yufei Feng¹, Hongjun Zhou², Tonglin Huo², Zhanshan Wang¹; ¹*Tongji Univ., China*; ²*Univ. of Science and Technology of China, China*. Narrowband Mg/SiC multilayer mirrors working around 30.4 nm with a significantly reduced bandwidth (FWHM \approx 0.7 nm) basing on high order reflection have been designed and fabricated by direct-current (DC) magnetron sputtering.

FB.5 • 10:40

UV Broadband Antireflection Coating Using Al₂O₃, HfO₂ and SiO₂ Multilayer by Atomic Layer Deposition, Qing-Yuan Cai¹, Ling-Shan Gao¹, Hai-Han Luo¹, Rui Cong¹, Dingquan Liu¹; ¹Shanghai Inst Tech Physics, CAS, China. UV broadband antireflection film M2HL in 250~390 nm spectral range was prepared by ALD using HfO₂ as H layer. Higher transmittance was acquired when HfO₂-Al₂O₃ nano-laminate replaced of HfO₂ in the AR coating.

FB.6 • 10:45

The Stress and Microstructure of Reactively Sputtered Ni/Ti Multilayers with Different D-spacing, Yufei Feng¹, Runze Qi¹, Zhong Zhang¹, Qiushi Huang¹, Zhanshan Wang¹; ¹*Tongji Univ., China*. The stress and microstructure of reactively sputtered Ni/Ti multilayers with different bilayer is investigated for applications in neutron optical devices. The microstructure of multilayers has been characterized by GIXR, XRD and XPS measurements.

10:50—11:00 • Closing Remarks, Program Chair, Robert Sargent, Tamaya Ballroom ABCD

11:00-12:00 • AB • Friday Morning Poster Session and Exhibits, Tamaya Ballroom EFGH

Posters included in this session are:

FA.3	FB.2
FA.4	FB.3
FA.5	FB.4
FA.6	FB.5
	FB.6

12:00–13:30 • Conference Lunch, Cottonwoods Pavilion and Patio