Ultrafast X-rays: What are they good for?

Phil Bucksbaum Siegman School 2016

Atomic, Molecular, and Optical Science (AMO)

X-ray interactions with atoms

Auger spectrum from N₂

Transient state studies: N₂⁺⁺ Potential Energy Surfaces

R. W. Wetmore and R. K. Boyd, J. Phys. Chem. 90, 5540 (1986).

Auger electron energies observed in the molecular frame from $N_2 \rightarrow N_2^+ \rightarrow N_2^{2+}$ at 1.1keV

⁽Cryan et al, J. Phys. B 45 055601 (2012))

Strong fields: 1-photon, 1-electron ionization

consider a 1-photon K-shell transition: $\sigma_{K} \approx 10^{-18} \text{ cm}^{2}$ $\Gamma_{K} = \sigma_{K}F_{IcIs} \approx 10^{15} \text{ s}^{-1}$ (saturated) $t_{K} = 1/\Gamma_{K} = 1 \text{ fs}$ 2s,p 1s photoionization

• rapid enough to ionize more than one electron.

• fast enough to compete with atomic relaxation.

Ne¹⁰⁺ at the focus:

Siegman Summer School

Strong and Ultrafast: Hollow atoms

Double core holes form when the photoionization rate exceeds Auger

Time

Hollow atom formation at LCLS

High Energy Auger Spectrum of N₂ from LCLS shows clearer evidence for double core hole formation

Ultrafast electron dynamics: Nucleobase photoprotection

July 2016

Siegman Summer School

13 13

Ultrafast electron dynamics: Nucleobase photoprotection

Non-Born-Oppenheimer dynamics

Siegman Summer School

Auger energy is sensitive to valence charge near the oxygen atom.

Localized structural evolution: Time-resolved Auger Electron Spectroscopy

Geometry change: 0.15 Å Spectral change: several eV

McFarland et al. Nature Commun. 2014, 5, 4235

Probing ultrafast $\pi\pi^*$ - $n\pi^*$ transitions via oxygen K-edge resonant absorption:

July 2016

Siegman Summer School

NEXAFS spectrum indicates a rapid decay to the $n\pi^*$ state

Siegman Summer School

Hard x-rays at X-FELs: Single particle imaging paradigm

- Ultrashort pulses outrun damage: diffract before destroy
- High intensities: A diffraction image on every spot.
- High repetition: Millions of images.

Serial femtosecond nanocrystallography

Chapman et al., Nature 470, 73 (2011)

PS-II structure from LCLS

Chapman, et al. Nature 470, 73 (2011)

CS-PAD (2.5Mpx) detector

Project each $S(Q_r,t)$ onto first 10 Legendre polynomials $P_L(\cos\theta)$

Signal comes from the entire charge distribution

Extracting the molecular movie from the scattering data.

 $\mathcal{AC}[\rho(\vec{x},t)] \equiv \rho(\vec{x},t) \otimes \rho(\vec{x},t)$ $= \mathcal{F}^{-1}(f(\vec{Q},t)f^*(\vec{Q},t))$

$$\mathcal{AC}[\rho(\vec{x},t)] = \mathcal{AC}[\rho_X(\vec{x})] + \mathcal{AC}[\rho_B(\vec{x},t)] + 2\mathcal{CC}[\rho_X(\vec{x}),\rho_B(\vec{x},t)]$$

$$2 \ \mathcal{CC}[\rho_X(\vec{x}), \rho_B(\vec{x}, t)] \simeq \mathcal{AC}[\rho(\vec{x}, t)] - \mathcal{AC}[\rho_X(\vec{x})]$$

The cross correlation is a hologram where the ground charge distribution creates the reference scattered wave.

M. J. J. Vrakking and T. Elsaesser, Nat Photon 6, 645-647 (2012).

$P_2(\cos\theta)$ component of S(Q,t)

В ЗПА 2 3 R(Å) 4 5 6 7 3.5 65 6 3 5.5 2.5 5 .5 2 1.5 3.5 3 1 0.5 0 5 1.5 2 0 WW

₹П

The movie

The future: X-ray-induced attosecond electron motion

Attosecond X-ray Free Electron Lasers

Laser pre-modulated electrons tame SASE

Ding, Y., PRST 12, (2009).

Mapping electron dynamics with core excitation

Core excitation creates localized electron disturbances. Correlation drives nonlocal electron transport in molecules

Example of how this could work: Send in three x-rays, k_1 , k_2 , and k_3 and read out the final Auger electron spectrum

Lunnemann et al., Chem Phys Lett 450 232 (2008); Mukamel et al., Ann Rev. P. Chem. 64, 101 (2013); Miyabe, S. & PHB, PRL 114, 143005 (2015)

Siegman Summer School

Lots of contributors

- Bucksbaum group
 - Adi Natan
 - Song Wang
 - Julien Devin
 - Matthew Ware
 - Adrei Kamalov
 - James Cryan
 - Vlad Petrovic
 - Chelsea Liekhus-Schmaltz
 - Greg McCracken
 - Andreas Kaldun
- PULSE and LCLS collaborators
 - Todd Martinez
 - Kellly Gaffney
 - David Reis
 - Shambhu Ghimire
 - Shungo Miyabe
 - Cristoph Bostedt (75% LCLS)
 - Mariano Trigo
 - Mike Glownia
 - Hermann Durr
 - Timor Osipov
 - Thomas Wolf
 - Ryan Coffee

- Other alumni in the past three years
 - Limor Spector (went to McKinsey)
 - Brian McFarland (went to LANL)
 - Fenglin Wang (went to CFEL)
 - Joe Farrell (graduated)
 - Doug Broge (graduated)
 - Ben Barbrel (LBNL)
 - Jaehee Kim (NSF, graduates 12/14)
 - James White (NSF, startup)
- Outside collaborators (partial list)
 - Nora Berrah et al, U. Conn
 - Lou Dimauro et al, Ohio State
 - Artem Rudenko, K-State
 - Tamar Seideman, N'western
 - Linda Young et al, ANL
 - Ilya Averbukh, Weizmann
 - Jon Marangos et al, Imperial
 - Hamed Merdji, CEA
 - Roseanne Sension, UM
 - Fenglin Wang, and others, CFEL
 - Markus Guehr (U. Potsdam)

