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M. I. Stockman, Nanoplasmonics: The
Physics Behind the Applications, Phys.
Today 64, 39-44 (2011).
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Lycurus Cup (4th Century AD): Roman Nanotechnology
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. 50nm

I. Freestone, N. Meeks, M.
Sax, and C. Higgitt, The
Lycurgus Cup - a Roman
Nanotechnology, Gold Bull.
40, 270-277 (2007

© Trustees of British Museum

Colors of Silver Nanocrystals and Gold Nanoshapes

SEM images
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C. Orendorff, T. Sau, and C. Murphy, Shape-

Dependent ..., Small 2, 636-639 (2006)
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bmlg . Scattering and absorption

of light by them are very strong.
This is due to the fact that all of
the millions of electrons move in
unison in plasmonic oscillations
Nanoplasmonic colors are also
eternal: metal nanoparticles are
stable in glass: they do not
bleach and do not blink. Gold is
stable under biological
conditions and is not toxic in
VIVO

Scanning electron microscopy

Dark field optical microscopy

100 nm W. A. Murray and W. L. Barnes,
Plasmonic Materials, Adv. Mater. 19,
3771-3782 (2007) [Scale bar: 300 nm]
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When shell becomes progressively thinner comparing to the core, the spectrum of the
nanoshell shifts to the red and then to the near-infrared where biological tissues do not

absorb .

Core: 60 nm
Shell 20—5 nm
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J. L. West and N. J. Halas, Engineered Nanomaterials for Biophotonics Applications: Improving Sensing,
Imaging, and Therapeutics, Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
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Plasmonic Near-Field Hot Spots:
Happy 22" Anniversary!

D. P. Tsai et al., Phys. Rev. Lett. 72, 4149 (1994).
*M. I. Stockman et al., Phys. Rev. Lett. 75, 2450 (1995)

*M. I. Stockman, L. N. Pandey, and T. F. George, Phys. Rev.

B 53, 2183 (1996)

50 cm

- >
- >

Random scattering speckles

Audnm, =053

A= 800 nm, Hot Spots Nb=617 =930 nm, Hot Spots Nb =453 =970 nm, Hot Spots Nb = 402

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, Phys. Rev. B 85,
045438 (2012).
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Repeciie 1S SPeckle size

A ~100 nm is reduced wave length
Ads laser spot size,
L is distance to the screen

Siegman School, ICFO p.9
7/28/2016 11:55 AM



Engineered Nanoplasmonic Hot Spots in Small
Clusters of Nanospheres
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0
500 nm
€
Fano resonance In a nanosphere cluster: Self-similar nanosphere nanolens: K. Li, M. I.
*M. Hentschel et al., Nano Lett. 10, 2721 (2010) Lett. 91, 227402 (2003)
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~ Enhancement factors for small nanoparticles (size R < 1,~25 nm)

o —Reeg.

Plasmonic quality factor: Q= 5 ~10-100

y Ime
Radiative rate enhancement for dipole mode frequency: ~ Q°
Excitation rate enhancement : ~ Q?

SERS enhancement: ~ Q°*
The above-listed enhancement factors do not depend on size R

Emission rate of SPs into a mode: oc %
1°Q
3
This enhancement factor is inversely proportional to R3
This is of fundamental importance for spasers (plasmonic

nanolasers)

This relative to free photons: ~ (Purcell factor)
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Nanoplasmonics is intrinsically ultrafast:

T, (1S)
75,
o

25

= | | 77 (GV)
1 2 3

Surface plasmon relaxation times are in
~10-100 fs range

Spectrally, surface plasmon
resonances in complex systems
occupy a very wide frequency
band; for gold and silver:

Aa)za)p/\/iz4ev

Including aluminum with
plasmon responses in the
ultraviolet, this spectral
width increases to ~10
eV.

Corresponding rise
time of plasmonic
responses ~ 100 as
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] Localized SP hot spots and SPPs coexist in space and time on nanostructured

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, Femtosecond Imaging

of Surface Plasmon Dynamics in a Nanostructured Silver Film, Nano Lett. 5, 1123
(2005). PEEM Image as a Function of Delay (250 as

Zpgnm

30 femtoseconds from life
of a nanoplasmonic

systems

Localized SP hot spots are §
deeply subwavelength as
seen in PEEM
(photoemission electron
microscope)

Dela
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Anal. Chem. 2008, 80, 4247—-4251

Correspondence

Gold Nanolenses Generated by Laser

- Ablation-Efficient Enhancing Structure for Surface
Different types of Enhanced Raman Scattering Analytics and

aggregates of gold Sensing

nan Osphe reS Janina Kneipp,* ¥ Xiangting Li,® Margaret Sherwood, Ulrich Panne,* Harald Kneipp,!
Mark I. Stockman,? and Katrin Kneippt"'
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Figure 3. Comparison of SERS using gold nanolenses made by ablation and chemically prepared nanoaggregates as enhancing nanostructures.
(a) Raman spectra measured from agueous solutions of gold nanoaggregates without any analyte to compare background signals. The chemically
prepared gold nanoparticles (spectrum B) display surface enhanced Raman lines, resulting from impurities introduced during the preparation
process of this particular batch of colloids, such as the line at ~1000 em~". The bands around 1500 cm~" in the spectrum of the ablation
nanoaggregates can be assigned to carbonate complexes.'® Spectra were measured at 50 mW at 785 nm excitation in 10 s (spectrum A) and
1 s (spectrum B) collection times. Abbreviation: cps, counts per second. (b) SERS signals of adenine measured in solutions of ablation aggregates
(spectrum A) and chemically prepared nanoaggregates (spectrum B) using 10 mW at 785 nm excitation. (c¢) Comparison of the Raman signal
of 107® M adenine and 10 M methanol measured in agqueous solutions of nanoaggregates.
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week ending

PRL 109, 017402 (2012) PHYSICAL REVIEW LETTERS 6 JULY 2012

Self-Similar Gold-Nanoparticle Antennas for a Cascaded Enhancement of the Optical Field

Christiane Hh'm:\ener,l’2 Zachary J. Lapin,l Palash Bhamdwaj,l and Lukas Novotnyl’*
Unstitute of Optics, University of Rochester; Rochester; New York 14627, USA
2[nstitute of Physics, University of Miinster, 48149 Miinster, Germany
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FIG. 4 (color online). Excitation of single-molecule fluores-
cence with a trimer antenna consisting of 80, 40, and 20 nm gold
nanoparticles. (a) Fluorescence image of the single-molecule
sample. Inset: Line cut through the single fluorescence
spot marked by the arrow. (b) Fluorescence from a single
z-oriented molecule recorded as a function of distance from a
trimer antenna. The steep rise of fluorescence counts for sepa-
Latest Progress in Nanoplasmonics http://www.phy-asirations smaller than 15 nm is due to strong field localization
and Spasers E-mail: mstoclalong the z axis at the apex of the trimer antenna.
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Sensing and Detection
with Localized Surface
Plasmons
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Immunochromatographic assay with
immunotargeted gold nanosphere
suspension. Detection of: hCG (human
chorionic gonadotropin) -- Home
pregnancy test; PSA (prostate-specific
antigen) -- Prostate cancer ; troponin —
heart attack test; HIV/AIDS (trials)

Immunoassay with immobilized
immunotargeted gold nanospheres. T.
Endo et al., Multiple Label-Free
Detection of Antigen-Antibody
Reaction Using Localized Surface
Plasmon ... Anal. Chem. 78, 6465-
6475 (2006)

Left: Glucose in vivo monitoring using SERS
from immobilized functionalized gold
nanospheres. J. N. Anker, et al., Biosensing
with Plasmonic Nanosensors, Nat. Mater. 7,
442-453 (2008).

Right: Palladium-nanocylinder hydrogen
sensor for hydrogen energy applications. H.
Giessen at al.
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Surface Plasmon Polariton Sensors
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Surface plasmon polariton
sensor based on
Kretschmann geometry.
Sensitivity~ 103 - 10 large
molecules. See, e.g.,
http://www.biacore.com/

GE Healthcare

Surface plasmon polariton
SERS sensor and NSOM
based on adiabatic
concentration.
Sensitivity~100 molecules
F. De Angelis et al,
Nanoscale Chemical
Mapping Using Three-
Dimensional Adiabatic
Compression of SPPs.
Nature Nanotechnology 5,
67-72 (2009).
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M. I. Stockman, Nanoplasmonic Sensing and Detection, Science 348,
287-288 (2015).

Capture and detection
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RESEARCH ARTICLE

OPTICS 2015 © The Authors, some rights reserved;
exclusive licensee American Association for
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under a Creative Commons Attribution
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NSOM images of healthy human
dermal fibroblasts in liquid obtained in

NANONICS IMAGING Ltd. transm_iSSion n_]Ode With_a _
Nanonics cantilevered tip with a gold
nanosphere (A. Lewis et al.)

¥ Incident light [l
Reflected light
Transmitted light I
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Plasmonic Nanoscopy.
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Left: Chemical vision: SERS image and
spectra of a single-wall carbon nanotube
obtained with a FIB-fabricated silver tip.

L. Novotny and S. J. Stranick, Annual Rev.
Phys. Chem. 57, 303-331 (2006)

Right: Nanosphere probe and image of
fluorescence enhancement of a single dye
molecule. H. Eghlidi et al., Nano Lett. 9,
4007-4011 (2009)

Left: Metallized tapered fiber probe and NSOM
image of a single fluorescent molecules with
polarization resolution.

Right: Nanoantenna-on-fiber probe and NSOM
image of a single fluorescent molecules with
polarization resolution. T. H. Taminiau, F. B.
Segerink, R. J. Moerland, L. Kuipers, and N. F.
van Hulst, Journal of Optics a-Pure and Applied
Optics 9, S315-S321 (2007)

Glass

Sample

Reflection

Transmission

Imaging of living cells in culture with a tapered fiber
NSOM. Left: Topology, Center: NSOM image, Right:
Schematic. E. Trevisan, E. Fabbretti, N. Medic, B.
Troian, S. Prato, F. Vita, G. Zabucchi, and M. Zweyer,
Novel Approaches for Scanning near-Field Optical
Microscopy Imaging of Oligodendrocytes in Culture,
Neuroimage 49, 517-524 (2010)
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PHYSICAL REVIEW LETTERS week ending

VOLUME 90, NUMBER 2 17 JANUARY 2003

Surface Plasmon Amplification by Stimulated Emission of Radiation:
Quantum Generation of Coherent Surface Plasmons in Nanosystems

David J. Bergmﬂn"* and Mark L Stockman®'
ISchool of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv, 69978, Israel

2Depar!mem of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303
(Received 15 September 2002; published 14 January 2003)

We make a step towards quantum nanoplasmonics: surface plasmon fields of a nanosystem are
quantized and their stimulated emission is considered. We introduce a quantum generator for surface
plasmon quanta and consider the phenomenon of surface plasmon amplification by stimulated emission
of radiation (spaser). Spaser generates temporally coherent high-intensity fields of selected surface
plasmon modes that can be strongly localized on the nanoscale, including dark modes that do not
couple to far-zone electromagnetic fields. Applications and related phenomena are discussed.

(a)

The original spaser proposal

Quantum Dots

. Qain

- ~ Medium

1%/Paser Core: Plasmonic
etal Nanopatrticle

T Substrate

Spaser field per one plasmon in the core
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Spasers explained

nature photonics | VOL 2 | JUNE 2008 |

MARK |. STOCKMAN

is in the Department of Physics and

Spaser is the ultimately smallest ‘e Ro] @S nEUNaEIgle]oIgi (o] [55

quantum,hano-generator ﬂ;smdab radla_ttl_ve loss Is
| = s negligible.

Spaser Is fully scalable

e-h pairs O

i

Plasmon

N

Exciton

Energy transfer

w

Gain medium Nanoshell

D. J. Bergman and M. I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation:
Quantum Generation of Coherent Surface Plasmons in Nanosystems, Phys. Rev. Lett. 90, 027402-1-4 (2003).
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Stationary (CW)
spaser regime

This quasilinear dependence of
the number of plasmons per
mode N,(g) is a result of the
very strong feedback in spaser
due to the small modal volume

arxXiv:0908.3559

Journal of Optics, 12,

024004-1-13 (2010).
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Amplification in Spaser without a
Saturable Absorber

SP coherent population Population inversion
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Bandwidth ~ 10-100 THz

Very high resistance to ionizing radiation

Amplification In Spaser with a Saturable
Absorber (1/3 of the gain chromophores)
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Demonstration of a spaser-based nanolaser

M. A. Noginov', G. Zhu', A. M. Belgrave', R. Bakker*, V. M. Shalaev?, E. E. Narimanov’, S. Stout™?, E. Herz’,
T. Suteewong” & U. Wiesner

a 0G-488dye P B ° o
Gold core doped & -
ilica shel &
Sodium
silicate shell

44 nm

Figure 1| Spaser design. a, Diagram of the hybrid nanoparticle architecture  (in false colour), with 1 = 5!
(not to scale), indicating dye molecules throughout the silica shell. circles represent the 14-nm
b, Transmission electron microscope image of Au core. ¢, Scanning electron  strength colour scheme is sl
microscope image of Au/silica/dye core-shell nanoparticles. d, Spaser mode

'Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA. ?School of Electrical & Computer Eng
University, West Lafayette, Indiana 47907, USA. *Materials Science and Engineering Department, Cornell University, Ithaca
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Figure 2 | Spectroscopic results. Normalized extinction (1), excitation (2),
spontaneous emission (3), and stimulated emission (4) spectra of Au/silica/
dye nanoparticles. The peak extinction cross-section of the nanoparticles is
1.1 X 10~ " cm?. The emission and excitation spectra were measured in a
spectrofluorometer at low fluence.
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Figure 4 | Stimulated emission. a, Main panel, stimulated emission spectra
of the nanoparticle sample pumped with 22.5 mJ (1}, 9m] (2}, 4.5m] (3),
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by the noise of the photodetector and the instability of the pumping laser) do
not exceed the size of the symbol. Inset of a, stimulated emission spectrum at
more than 100-fold dilution of the sample. Inset of b, the ratio of the
stimulated emission intensity (integrated between 526 nm and 537 nm) to
the spontaneous emission background (integrated at <526 nm and
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Lasing in metal-insulator-metal sub-wavelength
plasmonic waveguides

Martin T. Hill"", Milan Marell', Eunice S. P. Leong’, Barry Smalbrugge', Youcai Zhu',
Minghua Sunz, Peter J. van Veldhuvenl, Erik Jan Geluk', Fouad Karoutal, Yok-Siang
Oei', Richard Nitzel', Cun-Zheng Ning?, and Meint K. Smit'

YCORRA Research Institute, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands

: Department of Electrical Engineering, Arizona State University, Tempe AZ 85287, USA
mothill@icee.org

Received 14 Apr 2009; revised 8 Jun 2009; accepted 9 Tun 2009; published 18 Jun 2009
22 June 2009 / Vol. 17. No. 13 / OPTICS EXPRESS 11107

(b)

1d plasmonic field confinement

Fig. 1. Structure of cavity formed by a rectangular semiconductor pillar encapsulated in Silver.
(a) Schematic showing the device layer structure. (b) Scanning electron microscope image
showing the semiconductor core of one of the devices. The scale bar is 1 micron.
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Fig. 2. Spectra and near field patterns showing lasing in devices. (a) Above threshold emission
spectrum for 3 micron long device with semiconductor core width d~130nm ( + 20nm), with
pump current 180 pA at 78K. Inset: emission spectra for 20 (green), 40 (blue) and 60 (red) pA,
all at 78K. (b) Lasing mode light output (red crosses), integrated luminescence (blue circles),
versus pump current for 78K (c) Actual near field pattern (in x-y plane) for 6 micron (d =
130nm) device captured with 100x, 0.7 NA long working distance microscope objective and
infrared camera, the scale bar is 2 micron, for below threshold 30 pA, and (d) above threshold
320 pA. (e) Simulated vertical (z) component of the Poynting vector taken at 0.7 microns
below the pillar base, shows most emitted light at ends of device. (f) Spectra for a 6 micron
long device with d~310nm at 298K, pulsed operation (28 ns wide pulses, IMHz repetition).
Spectra for peak currents of 5.2mA (red), 5.9mA (green) and 7.4mA (blue), (currents were
estimated from the applied voltage pulse amplitude). The spectra for 5.9 and 7.4 mA are offset
from 0 for clarity. Inset shows the total light collected by the spectrometer from the device for
currents ranging from 0 to 10mA.
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Plasmon lasers at deep subwavelength scale

Rupert F. Oulton'*, Volker J. Sorger'*, Thomas Zentgraf'*, Ren-Min Ma?, Christopher Gladden’, Lun Dai’,
Guy Bartal' & Xiang Zhang!*?
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A room-temperature semiconductor spaser
operating near 1.5 pm

R. A. Flynn,' C. S. Kim,' I. Vurgaftman,' M. Kim,' J. R. Meyer,' A. J. Miikinen,"
K. Bussmann,” L. Clmng,3 F.-S. Chnaf' and J. P. L{mgd’*

25 April 2011 / Vol. 19. No. 9/ OPTICS EXPRESS 8954
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Plasmonic Nanolaser Using
Epitaxially Grown Silver Film

Yu-Jung Lu,** Jisun Kim,** Hung-Ying Chen,® Chihhui Wu,* Nima Dabidian,*
Charlotte E. Sanders,” Chun-Yuan Wang,' Ming-Yen Lu,” Bo-Hong Li," Xianggang Qiu,"
Wen-Hao Chang,” Lih-Juann Chen,” Gennady Shvets,® Chih-Kang Shih,*t Shangjr Gwo't

AVAAAS

Having developed J:I':ritax ully grown, atom-
1cally smooth Ag hlms as a scalable plasmonic
plattorm, we report a SPASER under CW opar-
ation with an ultralow lasing threshold at hgud
nitrogen temperture and a mode volume well
below the 3D diffraction hmit. The device has
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All-Color Plasmonic Nanolasers with Ultralow Thresholds:
Autotuning Mechanism for Single-Mode Lasing

Yu-Jung Ly’ C hun Yuan Wa mg, Jlsun Kim,* Huns_, \11‘1:.g Chen,’ Ming-Yen Lu, I Yen-Chun Chen,*
Wen-Hao C hmg, Lih-Juann Chen,! Mark I. Stockman,¥*T Chih- Kang Shih, #* and Sh: angjr Gwo™
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A room temperature low-threshold ultraviolet
plasmonic nanolaser

Qing Zhang1, Guangyuan Lil Xinfeng Liu!, Fang Qian?, Yat Li3, Tze Chien Sum'#,
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Figure 2 | Room temperature ultraviolet plasmonic lasing characterization. (a) Scanning electron microscopy (SEM) image of a GaN nanowire sitting
on SiO,/Al film. Inset: magnified scanning electron microscopy image of one end of the GaN nanowire. The nanowire length and diameter is 15um
and 100 nm, respectively. (b) Schematic of optical measurement and polarization detection setup. c is defined as the orientation of nanowire. The
incidence excitation laser is circular polarized and the focused laser beam can cover the whole nanowire. The emission scattered out from two ends is
collected and the polarization property along and perpendicular to nanowire axis ¢ is analysed. (¢) Spontaneous emission of as-fabricated plasmonic device
below lasing threshold at room temperature under a power fluence of 0.5 MW cm ~2 Arrows highlight the Fabry-Pérot peaks. The nanowire length
is 2pum. Inset: cavity mode spacing 84 variation with nanowire length L (green dots). 64 versus 1/L can be well fitted with a linear function (red curve),
suggesting a high group index ng (n,= 22/21) of 7.61 due to the high gain requirement of the plasmonic laser device. (d) Power-dependent emission
spectra of the plasmonic devices. One sharp peak with a maximum full width at half maximum (FWHM) ~ 0.8 nm appears above the spontaneous
Latest Prog ress in N emission background. The nanowire length is 15um. Inset: integrated emission versus pumping intensity. The S-shaped plot suggests the evolution from a
and Spa spontaneous emission, amplified spontaneous emission to lasing process.



Graphene spaser

Vadym Apalkov! and Mark I. Stockman!?3
! Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
2Fakultit fiir Physik, Ludwig-Maximilians-Universitdt,
Geschwister-Scholl-Platz 1, D-80539 Miinchen, Germany
® Maz-Planck-Institut fiir Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
(Dated: May 10, 2013)

We propose a graphene spaser, which is a coherent gquantum generator of surface plasmons in
nanostructured graphene. The plasmonic core of this spaser is a graphene monolayer nanopatch
and its active (gain) element is a multi-quantum well system with a design similar to the design
of an active element of quantum cascade laser. For realistic parameters of the multi-quantum well
system, the spasing in graphene monolayer can be achieved at a finite doping of graphene and at a
plasmon frequency, = 0.15 eV, close to the typical frequency of intersubband transitions in multi-
quantum well systems. The proposed graphene spaser will be an efficient source of intense and
coherent nanolocalized fields in the mid-infrared spectral region with wide perspective applications
in mid-infrared nanoscopy, nano-spectroscopy, and nano-lithography.

V. Apalkov and M. I. Stockman, Proposed Graphene Nanospaser, NPG: Light Sci. Appl. 3, e191 (2014).
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Stimulated emission of surface plasmon

polaritons on smooth and corrugated
silver surfaces

J K Kitur, G Zhu, Yo A Barnakov and M A Noginov
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with 7 mJ (1), 13 mJ (2) and 20 mJ (3) laser pulses. Inset: stimulated

emission threshold as a function of the surface roughness.
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Surface plasmon lasing observed in metal hole arrays

Frerik van Beijnum,'! Peter J. van Veldhoven,? Erik Jan Geluk.?
Michiel J.A. de Dood,! Gert W. 't Hooft,*? and Martin P. van Exter!

Phys. Rev.
Lett. 110,
206802-1-5

'Leiden University, Huygens Laboratory, P.O. Box 950], 2300 RA Leiden, The Netherlands (2013)

2C'OBRA Research Institute, Technische Universiteit Eindhoven,
Postbus 513, 5600 MEB Ewmdhoven, The Netherlands

% Philips Research Laboratories, Prof. Holstlaan J, 5656 AA FEindhoven, Netherlands
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FIG. 2. (a) Luminescence spectra as a function of pump
power, plotted on a semilog scale. For increasing pump power
the bandwidth of the luminescence increases until the device
starts lasing. Above threshold, the emission of the non-lasing
resonarnces starts to saturate at a maximum intensity. 80 mW
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Lasing action in strongly coupled plasmonic
nanocavity arrays

Wei Zhou'', Montacer Dridi?, Jae Yong Suh?, Chul Hoon Kim23', Dick T. Co?3,
Michael R. Wasielewski?3, George C. Schatz? and Teri W. Odom'23*
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Ultrafast plasmonic nanowire lasers near the
surface plasmon frequency

Themistoklis P. H. Sidiropoulos'*, Robert Réder?, Sebastian Geburt?, Ortwin Hess’, Stefan A. Maier’,
Carsten Ronning? and Rupert F. Oulton™ b

Time (ps)
N

0

- Figure 5 | Measured spectra versus double-pump pulse delay for the
~ | plasmonic nanowire laser and its Fourier transform. a, Normalized
difference spectrum, AL, ©)/lo (L) —I(h, T/ 1o (L) =1, of the plasmenic
nanowire laser for T = 0, where I(), T) is the spectrum under double-pump
excitation and lp(L) is the single strong pump pulse spectrum. The two
upper panels show the Al/ly spectra for the pulse delays, t =2.0 ps and
1 =31 ps, indicating the increasing spectral modulation frequency with
pulse delay. b, Fourier transform of each spectrum shown in a versus pulse
delay. The white trend line follows t=1 — Ton & Ty, indicating a turn-on time
of Ton=11ps. The inset shows the amplitude decay of the Fourier transform
along the white trend line, with linear fits (red lines) to the modulation
. peaks. The presented data in this figure correspond to measurements at the
L atest Progress in Nanoplasmonics http:/www.pl highest pump power (situation i) shown in Fig. 4a.
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Explosives detection in a lasing plasmon nanocavity
Ren-Min Ma't, Sadao Ota', Yimin Li", Sui Yang' and Xiang Zhang'?*

'MSF Manoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA, *Materials Sciences
Division, Lawrence Berkeley MNational Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA,
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Applications in Biomedicine: Why spaser is efficient as fluorescent,
photothermal and photoacoustic agent? It does not saturate!

Absorption cross section as a function of the pumping rate for different

loads r of spaser
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Spaser as Versatile Biomedical Tool

Ekaterina |. Galanzha,' Robert Weingold," Dmitry A. Nedosekin', Mustafa Sarimollaoglu,’
Alexander S. Kuchyanov?, Roman G. Parkhomenko®, Alexander |. Plekhanov?, Mark |.
Stockman®, Viadimir P. Zharov'

"Winthrop P. Rockefeller Cancer Institute, Arkansas Nanomedicine Center, University of
Arkansas for Medical Sciences, Little Rock, Arkansas 72205

’Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of
Science, Koptyug Ave. 1, 630090 Novosibirsk, Russia

®*Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of
Science, Lavrentiev Ave. 3, 630090 Novosibirsk, Russia

“Center for Nano-Optics and Department of Physics and Astronomy, Georgia State University,
29 Peachtree Center Ave., Atlanta, GA 30302, USA
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Acoustic waves
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Spaser for biological applications
a, Schematic of spaser as multifunctional
intracellular nanoprobe. b, Stimulated
emission in spaser suspension. c,
Radiation spectrum of spaser in
suspension at 528 nm at different pump
Intensities. d, Spatially homogenous
spaser’s emission at a relatively low pump
intensity (30 MW/cm?, 120-um thick
spaser’s suspension); Middle: emission
during the bubble formation around
overheated spasers (150 MW/cm?);
Bottom: “directional” spaser emission in
the presence of two large bubbles (200
MW/cm?). Scale bars, 10 pum.
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T sl signal dependence on laser pump energy
fluence for dye and spaser in suspension
and into cells. c-e, Images of single cancer
cell with spasers loaded through
endocytosis . (c)-scattering (dark field), (d)
—photothermal (PT) ; (e)- stimulated
emission for local irradiated cell zone in
background of conventional fluorescence
image. f, Spectral peak from single cancer
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Imaging of spasers in viable cells in vitro
and in biotissue in vivo. a, Schematic in
vitro. b, Optical transmission image. c, d,
Fluorescence imaging using conventional
optical source (lamp) of blood with cancer
cells at depth of ~1 mm (top) and spaser
emission from single cancer cell at depth of
1 mm (bottom). e, Schematic of intradermal
Injection of spaser suspension into top layer
of mouse ear tissue. f, PA identification of
spasers In ear tissue using laser spectral
scanning (top). Laser parameters: beam
diameter 15 um, fluence 20 mJ/cm?2. g,
Spaser emission through ~250 um ear tissue.
Pump parameters: beam diameter: 10 pum;
intensity, 30 MW/cm?.
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Demonstration of spaser as theranostic
agent. a, Cell viability tests for different
spaser concentration using two various Kits
without (blue, green) and after (red) laser
irradiation (100 mJ/cm?, 1 Hz, 3min). Inset:
intact cell (left) and cells labeled with spasers
at different concentration (middle and right)
after laser irradiation. b, Viability test for
concentration 15.6 x 10> M as a function of
laser exposure time (3s [3 pulses], 1 min, and
3 min); ¢, Viability test for concentration 15.6
X 10 M as a function of laser pulse number
(1, 3 and 5) showing that even single laser
pulse at fluence of 500 mJ/cm?is sufficient for
significant damage of cancer cells labeled by
spasers. The average SD for each column is
15-20%.
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The most important technological application: Information processing

P. Packan et al., in 2009 IEEE International Electron Devices Meeting (IEDM), High Performance 32nm
Logic Technology Featuring Second Generation High-K + Metal Gate Transistors (Baltimore, MD, 2009),
\ol. IEDM09-662, p. 28.4.1-28.4.4

Abstract:

A 32nm logic technology for high performance microprocessors is described. 2nd generation high-k + metal gate transistors
provide record drive currents at the tightest gate pitch reported for any 32 nm or 28nm logic technology. NMOS drive
currents are 1.62mA/um Idsat and 0.231mA/um Idlin at 1.0V and 100nA/um loff. PMOS drive currents are 1.37mA/um
Idsat and 0.240mA/um Idlin at 1.0V and 100nA/um loff. The impact of SRAM cell and array size on VVccmin is reported.
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ELECTRIC FIELD CONTROLLED SEMICONDUCTOR DEVICE
Filed May 31, 1960

Speed ~ 100-300 GHz
Low resistance to
ionizing radiation

Tri-Gate transistors can have multiple fins connected together
to increase total drive strenath far hiaher narformance

Processor speed : Transistor speed is not a limiting factor!
f = Idrive/(CInterconAU ) ~ 3 GHz Charging the interconnects is.



Concept of ~300 GHz processor
unit with ~1% energy cost per flop

Today C-MOS Technology
Electric interconnect (Copper wire)

2
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Near-future C-MOS Technology with
on-chip plasmonic interconnects
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Nanospaser with electric excitation
(“pumping”) does not exist as of today
yet, but fundamentally it is entirely
possible

Pump curent per one
plasmon in the mode

hico, (€V)
Spaser frequency

D. Liand M. I. Stockman,
Electric Spaser in the Extreme
Quantum Limit, Phys. Rev. Lett.
110, 106803-1-5 (2013)
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CONCLUSIONS
*Spasers are plasmonic nanolasers that have been demonstrated to
generate In a wide range of optical frequencies: from near-UV to
near-IR
*\arious designs of spasers have been implemented:
*metal core/gain shell
egain semiconductor nanorod over continuous metal nanofilm
*Rough metal nanofilm/gain dye nanolayer
emetal/gain semiconductor/metal
elasing spaser of periodic array of nanoholes in a metal nanofilm
with a semiconductor gain nanofilm over it
lasing spaser of a periodic array of metal nanoparticles on a
gain dye nanolayer
* Mid IR nanospaser on graphene has been proposed
First applications of spasers in explosives detection and cancer
diagnostics and treatment have been introduced






