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More than 300 years, optical imaging stays similar! 3

1665 - Robert Hooke's microscope.
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When light meets tissue: scattering and absorption
4

Confocal or two-photon microscopy

Optical coherence tomography

Optical-resolution photoacoustic tomography
1 mm

1 cm

10 cm

1 m

Wavefront engineering

100 µm

Planar optical microscopy

Aberration limit

Diffusion limit

Dissipation limit

Absorption limit

Optical penetration depth

Diffuse optical tomography

Ultrasound-modulated optical tomography

Acoustic-resolution photoacoustic tomography



https://photoacoustics.pratt.duke.edu/

Light is like life, going in all directions
5

Getty image

Nature, 497, 332–337 

Before clearing After clearing
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Photoacoustic effect: Listening to absorbed light 
6

Duke Photoacoustic Imaging Lab
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When light is absorbed, it is fluorescence and/or heat
7

One-photon 
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Two-photon 
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effect
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Ground 
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relaxation
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Sound

J Yao et al., Nature Methods 13(8), 2016
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Photoacoustic tomography: from energy to image

(1) ns laser pulse 

(e.g., 20 mJ/cm2)

(4) Ultrasonic 

detection & 

reconstruction

(3) Ultrasonic 

emission 

(~ mbar)

(2) Light 

absorption & 

heating (~ mK)

J Yao et al., Nature Methods 13(8), 2016
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http://appshopper.com/entertainme

nt/x-ray-hd-free
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Photoacoustic imaging: Listening to light whispering in tissues
9

Reference: Canon Inc. 
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Optical imaging of the tissue: from shallow to deep
10
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Implementations of photoacoustic tomography 11
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J Yao et al., Nature Methods 13(8), 2016



https://photoacoustics.pratt.duke.edu/

Endogenous contrast for photoacoustic imaging 12

Melanin

HbRHbO2
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Glucose

RNA

DNA

J Yao and L Wang, Laser Photon Rev, 7(5), 2013.
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13
Exogenous contrast for photoacoustic imaging

Size (nm)

1 5 10 50 100 1000

Organic dyes
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products
Nanoparticles/Quantum dots

Sensitivity (nM)

10-3100103106

IRDye-800 NanoparticlesBphP1

J Yao et al., Nature Methods 13(8), 2016
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Duke photoacoustic-imaging Lab in 3 years!
14

July, 2016Nov, 2016
Nov, 2017Oct, 2019
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Example 1: High-resolution photoacoustic microscopy
15

J Yao et al. Optics Letters, 35(9), 2010
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Photoacoustic microscopy of glass frog in resting/active states 16

Unpublished, Duke Photoacoustic Lab; Collaborator, Carlos Taboada

H. Fleischmanni Anatomy (US imaging)Oxygenation map (PAM)

Oxygenation

0.4 1.0

1 mm
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Monitoring blood ‘storage’ of glass frog from awake to asleep 17

Unpublished, Duke Photoacoustic Lab; Collaborator, Carlos Taboada

Oxygenation

0.4 1.0

0 min (awake) 10 min 50 min 70 min (asleep)
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Example 2: Whole-body small-animal photoacoustic tomography
18

L Li, J. Yao et al. Nature Biomedical Engineering, 1, 0071 (2017)

Penetration depth

3 cm
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Smaller for 
high 

throughput

Deeper for 
clinical 
impact

Colorful for 
molecular 
sensitivity

Our missions at Duke PI-Lab
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High-speed MEMS-based benchtop photoacoustic imaging
22
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J Yao et al., Nature Methods, 2015, 12 (5), 407-410
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MEMS-based benchtop PAM of brain’s hemodynamic response 23

0 20% PA signal change

J Yao et al., Nature Methods, 2015, 12 (5), 407-410

MEMS mirror
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Polygon-scanner PAM with ultrawide scanning range of 10 mm 24
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Unpublished, Duke Photoacoustic Lab
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Vessel constrictions induced by Epinephrine in skin and brain 25

500 µm 500 µm

Relative changes

0 0.4

Lan et al., BOE, 2018, 9(10), 4689-4701
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Brain microvasculature hemodynamics induced by Cardiac Arrest 26

Unpublished, Duke Photoacoustic Lab
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Handheld photoacoustic microscopy for skin lesion imaging 27

Unpublished, Duke Photoacoustic Lab

Lesion
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Label-free wearable photoacoustic imaging and treatment of 

circulating melanoma cells 28

www. pharmaceuticalintelligence.com
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Wearable photoacoustic watch for circulating melanoma 

detection during immune therapy 29
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Wrist mount

Unpublished, Duke Photoacoustic Lab
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Multiplexing the miniaturized photoacoustic imaging 31
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Unpublished, Duke Photoacoustic Lab
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Head-mounted photoacoustic imaging of neural activities 

on freely-behaving aged animals 32

Unpublished, Duke Photoacoustic Lab

GCaMP6 mouse
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PA detection 
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PAM/Fluorescence imaging of near-infrared calcium 

indicator (iGECI, ex: 670 nm) 33
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35

External 

illumination

Internal 

illumination

Lighting up from inside: Super-deep PAT with internal light

❑ Human whole-body imaging needs a penetration of more than 10 cm

❑ Photon penetration is limited to about 5 cm by optical attenuation
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A graded-scattering based optical fiber diffuser 36
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Li et al., IEEE transactions on medical imaging, 2019
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Deep PAT with internal light illumination in pig models 

during shockwave treatment
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Before Kidney surface

1000 shocks

Deep PAT with internal light illumination in pig models 

during shockwave treatment
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Thermal-memory-based PAT (TEMPT) of 

temperature during focused ultrasound therapy 40
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Correcting the skull’s aberration to ultrasound waves 41

Skull’s acoustic distortion

0.75 µs
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0 dB

3 mm

-60 dB

y
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Liang, et al., J of Biophotonics, 2019, e201800466
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Correcting the skull’s aberration to ultrasound waves 42
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Liang, et al., J of Biophotonics, 2019, e201800466
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Overwhelming endogenous biomolecules in deep-tissue PAT 44

J Yao et al., Nature Methods, 13 (1), 2016
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45
Weak molecular signals are overwhelmed 

by strong background blood signals

www. nasa. gov
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Photoswitchable non-fluorescent NIR bacterial phytochrome BphP1 46
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J Yao et al., Nature methods 13 (1), 67-73 (2016) 
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Differential PAT of BphP1: improved contrast and sensitivity 47

ON

5 mm
Norm. PA amplitude10

x
y

OFF Differential

HbO2

BphP1

ON OFF Diff
0

10

20

30

40

50

60

C
o

n
tr

a
s
t 

to
 n

o
is

e
 r

a
ti

o

BphP1

J Yao et al., Nature methods 13 (1), 67-73 (2016) 
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Multi-scale differential PAT: from single cells to whole-body 48
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Tumor

20 µm

Glioma cell

Bphp1

250 µm

Tumors

J Yao et al., Nature methods 13 (1), 67-73 (2016); 
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Longitudinal RS-PACT of cancer metastasis in mouse liver

Day 14

2 mm

Day 0 Day 7Day 3

Day 30Day 21

Detection sensitivity:  200 cancer cells at 10 mm depth

49

Day 0

J Yao et al., Nature methods 13 (1), 67-73 (2016); 
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Imaging protein-protein interactions by using a split version of BphP 50

Lei Li et al., Nature communication, 9, 2734 (2018) 
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Bio-switchable hypoxia-sensitive dye Hyp-650 51

Chen et al., Optics Letters, 44(15), 2019; Collaborator, Jeff Chan, UIUC
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Quantify the tissue’s hypoxia under ischemia 52

500 µm

Conversion 

0.50 1

Chen et al., Optics Letters, 44(15), 2019; Collaborator, Jeff Chan, UIUC
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Conclusions

 Photoacoustic imaging is intrinsically sensitive to tissue’s 
functional molecular information, based on optical absorption 
contrast

 A variety of functional and molecular probes (endogenous or 
exogenous) can be imaged by photoacoustic imaging, with high 
sensitivity and deep penetration

 Photoacoustic-imaging-specific functional molecular imaging 
strategies and toolkits have been developed and applied in life 
science 

 Clinical translation of photoacoustic imaging is on the horizon 
and will bring its unique impact to the medical imaging 
playground.    

53
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Welcome to visit us at Duke PI-Lab
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