WE ARE 心N

Breaking the Limits in Photoacoustic Imaging: Deeper, Smaller, and More Colorful

Junjie Yao, Duke University

The OSA Imaging Optical Design Technical Group Welcomes You!

OSA Imaging Optical Design Technical Group

The OSA Imaging Optical Design Technical Group

This group encompasses the design and characterization of traditional optical systems utilizing lens design, geometric ray-tracing, and physical optics modeling.

The evolution and development of design codes and software to assist in designing components and systems are included here.

Typical applications include astronomical telescopes, microscopes, cameras, stray light, and adaptive optics.

Technical Group Leadership 2020

Chair Dr. Maryna L. Meretska

Vice Chair Dr. Xusan Yang

Social Media Officer Dr. Marie-Anne Burcklen

Event Officer Dr. Sarmishtha Satphaty

Our Technical Group at a Glance

Our Focus

- "Physics of nonlinear optical materials, processes, devices, & applications"
- 2000 members

Our Mission

- To benefit <u>YOU</u>
- Webinars, social media, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at: TGactivities@osa.org.

Where To Find Us

- Website: <u>https://www.osa.org/fd</u>
- Facebook: https://www.facebook.com/groups/OSAImagingOpticalDesign/
- LinkedIn: https://www.linkedin.com/groups/8113351/

Today's Webinar

Imaging

Optical Design

Technical Group

Breaking the limits in photoacoustic imaging: deeper, smaller, and more colorful

Dr. Junjie Yao

Assistant Professor at the Department of Biomedical Engineering at Duke University, USA junjie.yao@duke.edu

Speaker's Short Bio:

Graduation in Physics at Tsinghua University, China Ph.D. degree from Washington University, USA

DUNIVERSITY From Light to Sound Breaking the Limits in Photoacoustic Imaging: Smaller, Deeper, and More Colorful

OSA April 28th, 2020 Junjie Yao, Ph.D. Assistant Professor Biomedical Engineering Duke University

Acknowledgements

Jun Zou (TA&M)

Qifa Zhou (USC)

Pei Zhong (Duke)

Qiangzhou Rong

Hannah Humayun

Xiaoyi Zhu

Collaborators

Lihong Wang (Caltech) Gregg Trahey (Duke) Xiaoning Jiang (NCSU)

Current lab members

Mucong Li Yuqi Tang	Anthony DiSpirito
	Davia Li
Tri Vu	Maomao Chen

Current funding

NIH R01 EB028143 (Yao) NIH R01 NS111039 (Yao) NIH R01 NS115581 (Yao) NIH R01 GM134036 (Zhang and Yao) NIH R21 EB027304 (Jiang and Yao) NIH R44 HL138185 (Sonovol and Yao) AHA 18CSA34080277 (Yang, Yao, Hoffmann) Duke MEDx grant (Yao) Duke GCB pilot grant (Yao) Duke DIBS incubator grant (Yao) Ulrike Hoffmann (Duke) Wei Yang (Duke) Vlad Verkhusha (AEC) Jeff Chan (UIUC) Yun Jing (NCSU)

2

More than 300 years, optical imaging stays similar!

https://photoacoustics.pratt.duke.edu/

Duke

When light meets tissue: scattering and absorption

Duke

4

Light is like life, going in all directions

https://photoacoustics.pratt.duke.edu/

Nature, 497, 332–337

Photoacoustic effect: Listening to absorbed light

https://photoacoustics.pratt.duke.edu/

Duke Photoacoustic Imaging Lab

When light is absorbed, it is fluorescence and/or heat

J Yao et al., Nature Methods 13(8), 2016

https://photoacoustics.pratt.duke.edu/

Duke

Photoacoustic tomography: from energy to image

(1) ns laser pulse (e.g., 20 mJ/cm²)

> (4) Ultrasonic detection & reconstruction

(2) Light absorption & heating (~ mK)

> (3) Ultrasonic emission (~ mbar)

http://appshopper.com/entertainme nt/x-ray-hd-free

https://photoacoustics.pratt.duke.edu,

Duke

8

J Yao et al., Nature Methods 13(8), 2016

Photoacoustic imaging: Listening to light whispering in tissues

Reference: Canon Inc.

https://photoacoustics.pratt.duke.edu/

Duke

Optical imaging of the tissue: from shallow to deep

Implementations of photoacoustic tomography

Optical-resolution photoacoustic microscopy

Resolution: 0.2-10 µm Penetration: 1-2 mm

Laser beam

Acoustic-resolution photoacoustic microscopy

Resolution: 15-50 µm Penetration: 3-10 mm

Object to be imaged

Resolution: 100-500 µm Penetration: 10-100 mm

J Yao et al., Nature Methods 13(8), 2016

Acoustic wave

https://photoacoustics.pratt.duke.edu/

Photoacoustic

computed tomography

Endogenous contrast for photoacoustic imaging

Duke

J Yao and L Wang, Laser Photon Rev, 7(5), 2013.

Exogenous contrast for photoacoustic imaging

J Yao et al., Nature Methods 13(8), 2016

https://photoacoustics.pratt.duke.edu/

Duke photoacoustic-imaging Lab in 3 years!

Example 1: High-resolution photoacoustic microscopy

J Yao et al. Optics Letters, 35(9), 2010

Photoacoustic microscopy of glass frog in resting/active states

Unpublished, Duke Photoacoustic Lab; Collaborator, Carlos Taboada

https://photoacoustics.pratt.duke.edu/

Duke

Monitoring blood 'storage' of glass frog from awake to asleep

0.4 1.0 Oxygenation

Unpublished, Duke Photoacoustic Lab; Collaborator, Carlos Taboada

https://photoacoustics.pratt.duke.edu/

Duke

Example 2: Whole-body small-animal photoacoustic tomography

L Li, J. Yao et al. Nature Biomedical Engineering, 1, 0071 (2017)

https://photoacoustics.pratt.duke.edu/

Duke

Our missions at Duke PI-Lab

Duke

9

Smaller for high throughput **Deeper** for clinical impact

Colorful for molecular sensitivity

Our missions at Duke PI-Lab

Smaller for high throughput **Deeper** for clinical impact **Colorful** for molecular sensitivity

High-speed MEMS-based benchtop photoacoustic imaging

J Yao et al., Nature Methods, 2015, 12 (5), 407-410

MEMS-based benchtop PAM of brain's hemodynamic response

J Yao et al., Nature Methods, 2015, 12 (5), 407-410

https://photoacoustics.pratt.duke.edu/

Polygon-scanner PAM with ultrawide scanning range of 10 mm

Unpublished, Duke Photoacoustic Lab

https://photoacoustics.pratt.duke.edu/

Lan et al., BOE, 2018, 9(10), 4689-4701

https://photoacoustics.pratt.duke.edu/

Unpublished, Duke Photoacoustic Lab

Handheld photoacoustic microscopy for skin lesion imaging

Unpublished, Duke Photoacoustic Lab

https://photoacoustics.pratt.duke.edu/

Duke

www.pharmaceuticalintelligence.com

Wearable photoacoustic watch for circulating melanoma detection during immune therapy

Unpublished, Duke Photoacoustic Lab

https://photoacoustics.pratt.duke.edu/

Duke

Multiplexing the miniaturized photoacoustic imaging

Unpublished, Duke Photoacoustic Lab

Head-mounted photoacoustic imaging of neural activities on freely-behaving aged animals

Unpublished, Duke Photoacoustic Lab

https://photoacoustics.pratt.duke.edu/

Duke

PAM/Fluorescence imaging of near-infrared calcium indicator (iGECI, ex: 670 nm)

Duke PRATT SCHOOL of ENGINEERING

33

Blood oxygenation (PAM)

iGECI (fluorescence)

Nature Biotechnology, under review. Collaborator, Vlad Verkhusha

Our missions at Duke PI-Lab

Duke

34

Smaller for high throughput **Deeper** for clinical impact **Colorful** for molecular sensitivity

Lighting up from inside: Super-deep PAT with internal light

Human whole-body imaging needs a penetration of more than 10 cm
Photon penetration is limited to about 5 cm by optical attenuation

https://photoacoustics.pratt.duke.edu/

Duke

A graded-scattering based optical fiber diffuser

Li et al., IEEE transactions on medical imaging, 2019

Deep PAT with internal light illumination in pig models during shockwave treatment

Deep PAT with internal light illumination in pig models during shockwave treatment

https://photoacoustics.pratt.duke.edu/

Thermal-memory-based PAT (TEMPT) of temperature during focused ultrasound therapy

Zhou, et al., Optica, 2019, 6(2), 198-205

https://photoacoustics.pratt.duke.edu/

sec

Duke

Correcting the skull's aberration to ultrasound waves

Liang, et al., J of Biophotonics, 2019, e201800466

-60 dB

0 dB

https://photoacoustics.pratt.duke.edu/

Duke

Correcting the skull's aberration to ultrasound waves

Aberration correction

5.7 mm

Liang, et al., J of Biophotonics, 2019, e201800466

https://photoacoustics.pratt.duke.edu/

Duke

Our missions at Duke PI-Lab

Duke

43

Smaller for high throughput **Deeper** for clinical impact

Colorful for molecular sensitivity

Overwhelming endogenous biomolecules in deep-tissue PAT

Volumetric rendering

J Yao et al., Nature Methods, 13 (1), 2016

https://photoacoustics.pratt.duke.edu/

Duke

Weak molecular signals are overwhelmed by strong background blood signals

https://photoacoustics.pratt.duke.edu/

Duke

46

Photoswitchable non-fluorescent NIR bacterial phytochrome BphP1

https://photoacoustics.pratt.duke.edu/

J Yao et al., Nature methods 13 (1), 67-73 (2016)

Differential PAT of BphP1: improved contrast and sensitivity

J Yao et al., Nature methods 13 (1), 67-73 (2016)

https://photoacoustics.pratt.duke.edu/

Duke

Multi-scale differential PAT: from single cells to whole-body

J Yao et al., Nature methods 13 (1), 67-73 (2016);

Longitudinal RS-PACT of cancer metastasis in mouse liver

Duke

Detection sensitivity: 200 cancer cells at 10 mm depth

J Yao et al., Nature methods 13 (1), 67-73 (2016);

Imaging protein-protein interactions by using a split version of BphP

Lei Li et al., Nature communication, 9, 2734 (2018)

https://photoacoustics.pratt.duke.edu/

Duke

Bio-switchable hypoxia-sensitive dye Hyp-650

Chen et al., Optics Letters, 44(15), 2019; Collaborator, Jeff Chan, UIUC

https://photoacoustics.pratt.duke.edu/

Duke

Quantify the tissue's hypoxia under ischemia

Chen et al., Optics Letters, 44(15), 2019; Collaborator, Jeff Chan, UIUC

https://photoacoustics.pratt.duke.edu/

Duke

Conclusions

- Photoacoustic imaging is intrinsically sensitive to tissue's functional molecular information, based on optical absorption contrast
- A variety of functional and molecular probes (endogenous or exogenous) can be imaged by photoacoustic imaging, with high sensitivity and deep penetration
- Photoacoustic-imaging-specific functional molecular imaging strategies and toolkits have been developed and applied in life science
- Clinical translation of photoacoustic imaging is on the horizon and will bring its unique impact to the medical imaging playground.

Duke

DEPARTMENT OF Biomedical Engineering

MEDx: the intersection of medicine and engineering

Duke

ALUMNI NEWS Spring 2

DPT Program Celebrates 75th / DMAA Awards