Burst Mode Lasers

Presented by:

OSA Systems Technical Group

The OSA Laser Systems Technical Group Welcomes You!

Technical Group Leadership 2019

Chair Mark Spencer Air Force Research Laboratory

Vice Chair Casey Pellizzari United States Air Force Academy

Event officer Santasri Bose-Pillai Air Force Institute of Technology

Social media officer Walid Tawfik Younes Mohamed Cairo University

Webinar officer Jason Schmidt MZA Associates Corporation

Macquarie University

OSA Laser Systems Technical Group

Technical Group at a Glance

Focus

• This group encompasses novel laser system development for a broad range of scientific, industrial, medical, remote sensing and other directed-energy applications.

Mission

- To benefit <u>YOU</u>
- Webinars, e-Presence, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGLaserSystems@osa.org</u>.

• Find us here

- Website: <u>www.osa.org/LaserSystemsTG</u>
- Facebook: https://www.facebook.com/groups/378463153017808/
- LinkedIn: https://www.linkedin.com/groups/6993076/

Today's Webinar

Burst Mode Lasers Webinar

Dr. Josef Felver

Spectral Energies LLC josef.felver@spectralenergies.com

Speaker's Short Bio:

Dr. Josef Felver's specialization is the development and application of burst-mode laser systems with a focus on system integration and software control. He holds a doctoral degree in Physics from Washington State University.

Burst-Mode Lasers

Josef Felver

Outline

Laser architecture and capabilities Diagnostic techniques Outlook

Reacting flow models validation
Studies of flame instabilities
Diagnostics of new engines

Pulse-burst laser approach

(Based on Lempert and Miles, et. al., AIAA-96-0500, 1996)

Brief History of Burst-Mode Lasers

Burst-Mode Lasers ("Pulse-burst")

- •Princeton R. Miles
 - 500 kHz, 100 µs (PDV)
- •NASA Glenn M. Wernet
 - 1 MHz, <100 µs (PIV)

•Ohio State – W. Lempert

- 10-1000 kHz, 1 ms
- NO PLIF visualization

•Auburn – B. Thurow

3D scanning flow visualization

•Ohio State – J. Sutton

- Raman, Rayleigh (10 kHz, 10 ms)
- •AFRL/Iowa State Roy, Meyer, Gord
 - OH, NO, CH₂O PLIF, Mixture fraction, PIV
 - 5-100 kHz, up to 30 ms

Jiang, Appl. Opt. (2011)

Miller, Slipchenko et al., Opt. Lett. (2009)

Slipchenko, Opt. Lett. (2012)

Miller, Appl. Phys. B (2013)

Patton, Appl. Phys. B. (2012)

Necessity of High-Fidelity Measurements

Comparing 4 different state-of-the-art reacting LES codes on the Volvo bluff body test case:

Premixed Propane-Air, Re = 40,000, 288 K, Equivalence Ratio = 0.65

Instantaneous temperature Contours

Peter A. Cocks, Vaidyanathan Sankaran, and Marios C. Soteriou, AIAA SciTech Forum, 52nd Aerospace Sciences Meeting (2014) DOI: 10.2514/6.2014-0826

All using the same grid, time-step, boundary conditions, and physical models: All give completely different answers!

- DNS not applicable to large scales yet: LES numerics and grid dependencies still exist even for simple problems.
- LES uses sub-grid models for turbulence-chemistry interactions How do we know if models and global, system-level interactions are accurately understood under relevant high thermal power conditions?

Why laser diagnostics?

Particle image velocimetry (PIV)

http://cav.safl.umn.edu/Facilities/piv.htm

Why laser diagnostics?

Laser spectroscopy

Line frequency Line intensity ► Line width

Spectrum can be related to the thermodynamic state of the gas

speed pressure concentration temperature

Pulse-burst laser layout

Burst-mode: high-energy output

Diode pumping: 100-ms Burst Duration

Diode array split for enhanced overlap

Pulse-burst laser flexibility

Pulse sequence shaping at high-repetition-rates via modulation of master oscillator

Flexible oscillator: Pulse Shaping

Flexible oscillator: Pulse Shaping

Flexible oscillator: Dual-pulse operation

10,000-frame, 100-kHz Stereo TR-PIV

10-kHz PIV is insufficient to resolve high-speed structures

100 kHz, $\Delta t = 10 \ \mu s$

 $\times 2$

10 kHz, $\Delta t = 100 \ \mu s$

Stereo PIV along centerline of a Mach 0.3 free jet with Re = 30,000. Up to 4 mJ per pulse at 100 kHz with 1 µs inter-pulse spacing.

25 and 50 kHz TR-PIV in Trisonic Wind Tunnel Mach 3.7 jet issuing into a Mach 0.8 crossflow

Transient Wake Vorticity Behind Cylinder

Development of a compact 14 J Nd:YAG burst-mode laser for PIV

- Sufficient PIV capabilities
- Easy transportation and more lab space
- Cost effective

Higher Harmonics

50 and 100 kHz formaldehyde PLIF Mach 2 scramjet flameholder

Burst-mode laser applied to characterize spark and pulsedetonator ignition and flameholding in RQH Research Cell 19 with Drs. Cam Carter and Scott Peltier

50 and 100 kHz formaldehyde PLIF Mach 2 scramjet flameholder

Formaldehyde PLIF and Chemiluminescence

50 kHz, 75 SLPM C₂H₄

Detonator

Failed Detonator

50 and 100 kHz formaldehyde PLIF Mach 2 scramjet flameholder

Formaldehyde PLIF and Chemiluminescence

50 kHz, 75 SLPM C₂H₄

Spark

Detonator

Failed Detonator

High-Speed 3D Combustion Species Measurements

20-kHz Tomo Acetone LIF

20 kHz Tomo CH₂O LIF

Halls et al. Optics letters 42 (14), 2830-2833 (2017) Meyer et al., Optics express 24 (26), 29547-29555 (2016)

10 kHz Tomo LII

Halls et al, Proceedings of the Combustion Institute 36 (3), 4611-4618 (2017)

Multi-Leg Burst Mode Laser

Multi-Leg Burst Mode Laser

Roy et al Opt. Lett. 43, 2704-2707 (2018)

Simultaneous Measurements of Velocity and Scalars in Reacting Flows at 10 kHz

- The unique laser system is capable of simultaneously measuring velocity and concentrations of OH and CH₂O at a rate of 10 kHz
- Ability to identify the reaction zone, preheat zone, and flow velocity vector field with a single laser system

Roy et al., Optics letters 43 (11), 2704-2707 (2018)

Picosecond Burst-mode Laser

S. Roy, J. Miller, N. Slipchenko et. al. Optics Lett. 2014

Picosecond Burst-mode Laser

Self Focusing Damage to Nd:YAG Rod

Picosecond Burst-mode Laser

Picosecond Laser Electronic-Excitation Tagging

Coherent anti-Stokes Raman scattering

	Molecule	Transition, cm ⁻¹	
@1	H ₂ S(3)	1050	ω ₄
	CO_2	1275	
	C_2H_4	1340	v=1
all or	CO_2	1388	
The pump, ω_p , Sto	H ₂ S(5)	1400	l order polarization:
$P^{(3)}(a) = a +$	CH_4	1535	$E(\omega) = E(\omega) = E^*(\omega)$
CARS Coo as p	O_2	1555	p P $(00 pr)$ P $(00 S)$
where	C_2H_4	1625	
$\chi^{(3)}_{e\!f\!f}=\chi^{(3)}_{\scriptscriptstyle NR}$ -	H ₂ S(6)	1650	
	СО	2143	
This polariza	N_2	2331	
$I_{\alpha}(\omega_{\alpha}) \propto N^{2}$	Hydrocarbons	2900 - 3200	
- CARS (as)			

P. D. Maker and R. W. Terhune, Phys. Rev., 1965

100 kHz burst-mode CARS layout

Roy et. al. Optics Lett. (2016)

Burst-mode OPG/OPA performance

Roy et. al. Optics Lett. (2016)

100-kHz CARS H₂ thermometry

Jet diffusion flame Re~10,000

Roy et. al. Optics Lett. (2016)

1-kHz Single-Shot 2D CARS

1 kHz Temperature Imaging in a High-Speed Heated Jet

Steady-State Temperature Analysis

T = 295 K	IRO Gain	T _{avg} [K], (%)	T _{RMS,X} [K], (%)	T _{RMS,t} [K], (%)
O ₂	35%	287.2 (2.6%)	27.1 (9.4%)	7.4 (2.6%)

400 K 300 K 300 K 10 | Back

Spatial Res. @ 20% MTF = 79 µm (~ 3 pix)

Dispersion = 0.1 cm⁻¹/pix, Spectral Instrument Function = 0.46 cm⁻¹ (~4.5 pix)

Advantages of burst-mode lasers

- Order of magnitude higher pulse energies compared to continuously pulsed lasers
- Flexible repetition rate (1 10 MHz)
- Flexible pulse duration (100 ps $-10 \mu s$)
- Inherent PIV capabilities
- External triggering, cold start

SYSTEM SPECS							
Quasimodo Model	1200	150	1500	100 ps option			
Individual pulse width	10-15 ns	10-15 ns	10-15 ns	100 ps			
Pulse frequency within a Burst	2-100 kHz	2-100 kHz	2-100 kHz	2-100 kHz			
Number of pulses in	100 @ 10 kHz						
Burst	1000 @ 100 kHz	1000 @ 100 kHz	1000 @ 100 kHz	1000 @ 100 kHz			
Duration of Burst	1-10 ms	1-10 ms	1-10 ms	1-10 ms			
Typical pulse energies (mJ) @ 10 kHz							
1064 nm	1000 (Limited)	100	1000 (Limited)	200			
532 nm	500	50	500	100			
355 nm	250	20	250	NA			
266 nm	70	3	70	NA			
Typical pulse energies (mJ) @ 100 kHz							
1064 nm	100	15	150	120			
532 nm	50	5	70	60			
355 nm	25	NA	30	NA			
266 nm	3	NA	5	NA			
Time between pulse sequences	12 seconds	12 seconds	12 seconds	12 seconds			
Spectral Bandwidth	<1 GHz	<1 GHz	< 1 GHz	< 10 GHz			
Beam diameter, 1/e ²	4 - 7 mm	2.5 - 5 mm	4 - 7 mm	4 - 7 mm			
Beam quality, M ²	< 5	< 5	< 5	< 5			
Pulse sequence flatness with optional tailored profile control	>0.90	>0.90	>0.90	>0.90			

- MHz-rate 2D and 3D imaging
- Going femtoseconds (1 MHz 2D CARS)
- 100 kHz 1 MHz tunable sources

Future work: Spatio-Temporally Evolving Complex Flows

- Supersonic combustion wave, Mach > 7
- 4D cellular wave front structure, requiring MHz time resolution to track!
- Multiphase flows in explosives, particles of varying sizes, gas/solid phase velocities
 - Most subsonic, supersonic, and high-speed systems

Unpublished work at Purdue

Summary

- Transportable system
- ✓ Generation of stable 100-ms bursts (RMS ~2%)
- ✓ Extension of TDR (5,000)
- Pulse amplitude shaping for burst flatness enhancement
- ✓ Extension to picosecond pulse widths (<100 ps)
- ✓ Highly efficient SHG (~70%) using ps burst-mode laser

Acknowledgements

Michael Smyser Kazi Arafat Rahman

Naibo Jiang Paul Hsu Jason Mance Sukesh Roy Mikhail Slipchenko

Terry Meyer

Funding

Air Force Office of Scientific Research Army Research Office Office of Naval Research DARPA Department of Energy NSF

Wright-Patterson Air Force Base

Joe Miller

