WE ARE 心N

Coupling Defect Centers in Diamond to Fabry-Perot Microcavities

Lilian Childress, McGill University

OSA Technical Groups

Create lasting, valuable connections.

Engaging communities Innovative events Focused networking Enriching webinars

osa.org/technicalgroups

Technical Group Leadership 2021

Chair: <u>Dr. Graciana Puentes</u> University of Buenos Aires, AR

Vice-Chair: Dr. Lee Bassett University of Pennsylvania, US

Events Officer: <u>Dr. Sara Mouradian</u> UC Berkeley, US

Social Media Officer: <u>Dr. Xuejian Wu</u> Rutgers University, US

Liason with Industry: Dr. <u>Mo Soltani</u> Raytheon BBN Technologies, US

Our Technical Group at a Glance

- Experiment, theory, and technologies relevant for quantum measurements and quantum information within the purview of quantum optical science
- Nearly 3000 members worldwide
- Webpage <u>https://www.osa.org/oq</u>
- Webinars, technical events, networking events, campfire sessions etc.
- Suggestions, ideas for events, email us at OSA <u>TGActivities/gpuentes@df.uba.ar</u>
- Upcoming Webinar:
- 31 March 2021
- Prof. Friedemann Reinhard
- The Planar Scanning Probe Microscope: A Novel Platform for Quantum Sensing and Near-Field Microscopy

Welcome to the Quantum Optical Science and Technology Technical Group Webinar!

Coupling diamond defect centers to high-finesse optical microcavities

Motivation: a solid-state spin-photon interface

Quantum networks

Connecting quantum nodes: heralded entanglement

The vision:

• A few-spin-qubit register with preparation, coherent control, and measurement

Scalability via optical connections

Spin-photon entanglement Togan et al. 2010 Nature Quantum interference

Coincidence detection → leaves spins entangled Bernien et al 2013 Nature

Challenge: efficiency

Spin-selective transitions

Polarization selection rules

BUT:

Only 3% of emission is in ZPL

Dephasing: Detection window needed to render photons indistinguishable

$$\Delta t \sim \frac{1}{\gamma} << \tau$$

Spin-selective transitions

Polarization selection rules

BUT:

Only 3% of emission is in ZPL

Dephasing: Detection window needed to render photons indistinguishable

Connecting quantum nodes: heralded entanglement

Many protocols require two photon detections for high fidelity

To improve efficiency:

- Good photon collection efficiency into single mode
- Enhanced ZPL emission
- Decreased radiative lifetime

Cavity quantum electrodynamics

$$F_{p} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$$
 Quality factor
Wode volume

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

$$F_{P} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$$
 Quality factor
Mode volume

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

Emission on cavity resonance enhanced by $F_P + 1$

 $F_{P} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$ Quality factor Mode volume

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction and improve collection efficiency

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

Figure of merit: cooperativity governs rate of emission of indistinguishable photons via the cavity

$$C = F_P \frac{\gamma_{ZPL}}{\gamma_{ZPL} + \gamma_{PSB} + \gamma_{NR} + \gamma_D}$$

Emission on cavity resonance enhanced by $F_P + 1$

 $F_{P} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$ Quality factor Mode volume

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction and improve collection efficiency

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

Figure of merit: cooperativity governs rate of emission of indistinguishable photons via the cavity

$$C = F_P \frac{\gamma_{ZPL}}{\gamma_{ZPL} + \gamma_{PSB} + \gamma_R} + \gamma_D$$

Emission on cavity resonance enhanced by $F_P + 1$

 $F_{p} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$ Quality factor Mode volume

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction and improve collection efficiency

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

Emission on cavity resonance enhanced by F_P

Figure of merit: cooperativity governs rate of emission of indistinguishable photons via the cavity

PRL 109, 033604 (2012)
Also Loncar, Fu, Becher, Barclay,
Lukin, Awschalom, Englund, Hu...
n on cavity resonance enhanced by
$$F_P + 1$$

 $F_P = \frac{3}{4\pi^2} \left(\frac{\lambda}{n}\right)^3 \frac{Q}{V}$ Quality factor
 $Mode volume$
 $C = F_P \frac{\gamma_{ZPL}}{\gamma_{ZPL} + \gamma_{PSB} + \gamma_{R} + \gamma_D}$
 $Optical dephasing rate$

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction *and* improve collection efficiency

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay,

Lukin, Awschalom, Englund, Hu...

Emission on cavity resonance enhanced by F_P

Figure of merit: cooperativity governs rate of emission of indistinguishable photons via the cavity

PRL 109, 033604 (2012)
Also Loncar, Fu, Becher, Barclay,
Lukin, Awschalom, Englund, Hu...
n on cavity resonance enhanced by
$$F_P + 1$$

 $F_P = \frac{3}{4\pi^2} \left(\frac{\lambda}{n}\right)^3 \frac{Q}{V}$ Quality factor
 $V = F_P \frac{\gamma_{ZPL}}{\gamma_{ZPL} + \gamma_{PSB} + \gamma_{R}} + \gamma_D$
Optical
dephasing
rate

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction and improve collection efficiency

But...

spectral diffusion near surfaces

issue for nanoscale structures

Cavity quantum electrodynamics

PRL 109, 033604 (2012) Also Loncar, Fu, Becher, Barclay, Lukin, Awschalom, Englund, Hu...

Emission on cavity resonance enhanced by F_P

Figure of merit: cooperativity governs rate of emission of indistinguishable photons via the cavity

PRL 109, 033604 (2012)
Also Loncar, Fu, Becher, Barclay,
Lukin, Awschalom, Englund, Hu...
n on cavity resonance enhanced by
$$F_P + 1$$

 $F_P = \frac{3}{4\pi^2} \left(\frac{\lambda}{n}\right)^3 \frac{Q}{V}$ Quality factor
 $Mode volume$
 $C = F_P \frac{\gamma_{ZPL}}{\gamma_{ZPL} + \gamma_{PSB} + \gamma_{R}} + \gamma_D$
 $Optical dephasing rate$

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction and improve collection efficiency

But...

spectral diffusion near surfaces

issue for nanoscale structures

A single electron fluctuation 100nm away poses problems!

Overcoming spectral diffusion

- Do the hard work
 - Better annealing and fabrication recipes
 - Careful surface science
 - Repeatability...
- Stop using NVs

Avoid nanofabrication

PRX 9, 031052 (de Leon group)

SiV- defects

- Large ZPL fraction
- Reduced spectral diffusion
- Spin coherence poor above 1K
- Low quantum efficiency Others...?

Cavity quantum electrodynamics

External, free-space cavities

Cavity quantum electrodynamics

External, free-space cavities

Cavity quantum electrodynamics

External, free-space cavities

Cavity quantum electrodynamics

number of round trips

External, free-space cavities

Cavity quantum electrodynamics

External, free-space cavities

Cavity quantum electrodynamics

Emission on cavity resonance enhanced by

$$F_p = \frac{3}{\pi^3} \frac{\lambda^2}{w_0^2} F$$

Length drops out

External, free-space cavities based on optical fibers

Cavity quantum electrodynamics

Emission on cavity resonance enhanced by

$$F_p = \frac{3}{\pi^3} \frac{\lambda^2}{w_0^2} F$$

Length drops out

 $F_p \approx$ few thousand potentially feasible

Emission on cavity resonance enhanced by

$$F_P = \frac{3}{\pi^3} \frac{\lambda^2}{w_0^2} F$$

Length drops out

Tunable cavity with excellent out-coupling for collection efficiency ...and potentially cavity quantum electrodynamics

Laser ablation:

Well-controlled

- laser power
- mode shape
- alignment precision (0.5 microns)

Laser-ablated fiber

For $L \ll ROC$, $F_P \propto 1/\sqrt{ROC}$

Alternate approaches:

FIB milling

Effective ROC down to 4.3 μ m

Opt. Express 23, 17205717216 (2015) (Smith group) 17205

Combine photolithography with CO₂ laser ablation:

Building fiber cavities:

Membrane-in-cavity system

Challenges:

- High quality NV centers in membranes
- Low membrane scattering and absorption
- Cavity stabilization (at the pm level) in a cryogenic environment

Membrane bonded by van der Waals forces

I. NVs in membranes

Idea: work with few-micron thick membranes, electron irradiated, sliced, ArCl₂ / O₂ etched

- Single-scan linewidths as low as 25 MHz (TU Delft measurement on our irradiated sample)
- Spectral diffusion ~ 300 MHz (average)

=> Comparable to results in bulk electronic-grade samples

More detailed study (TU Delft):

I. NVs in membranes

Idea: work with few-micron thick membranes, electron irradiated, sliced, ArCl₂ / O₂ etched

- Single-scan linewidths as low as 25 MHz (TU Delft measurement on our irradiated sample)
- Spectral diffusion ~ 300 MHz (average)

=> Comparable to results in bulk electronic-grade samples

Nano Letters 19, 3987 (2019), TU Delft

I. NVs in membranes

Idea: work with few-micron thick membranes, electron irradiated, sliced, ArCl₂ / O₂ etched

- Single-scan linewidths as low as 25 MHz (TU Delft measurement on our irradiated sample)
- Spectral diffusion ~ 300 MHz (average)

=> Comparable to results in bulk electronic-grade samples down to ~ few μm

• Bulk optical absorption

• Bulk optical absorption negligible

• Surface roughness

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

- Bulk optical absorption negligible
- Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination

RE

II. Membrane losses

- Bulk optical absorption negligible
- Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Įt_d

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Įt_d

ε

- Bulk optical absorption negligible
- Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

 Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Distinguishing bulk from surface losses:

Bulk optical absorption negligible

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Įt_d

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Įt_d

• Surface roughness

 $ArCl_2$ etch \rightarrow as low as 0.2 nm rms

 $\left(\frac{4\pi\sigma}{\lambda}\right)^2 \sim 15 \text{ ppm} \quad << 70 \text{ ppm mirror transmission}$

• Surface absorption/contamination seems to be the limiting factor

Distinguishing bulk from surface losses:

Įt_d

Membrane losses

Calculation of cavity finesse with

- Diamond Absorption
- Scattering at Diamond-Air Interface
- Mirror Losses
- Scattering at Mirror-Diamond Interface
- Best Guess

Resonant wavelength (nm)

Distinguishing bulk from surface losses:

Surface losses

 Improved etching techniques (ArCl₂ + O₂) => reduced surface losses

- Results inconsistent with AFM results of
 - $\sigma \approx 0.25 \text{ nm-rms}$
 - => surface absorption/contamination
- Can now see finesse > 10,000 in diamond-like modes (sometimes)

ε

t

R

The "bad emitter regime:" coupling phonon broadened emission to fiber cavities

Use to explore cavity coupling to defects in membranes

GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Potentially easier to achieve strong coupling than with NVs

GeV defects

Experimental setup

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Potentially easier to achieve strong coupling than with NVs

GeV defects

Experimental setup

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Potentially easier to achieve strong coupling than with NVs

GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Potentially easier to achieve strong coupling than with NVs

Collaboration with Andersen group, DTU

Experimental setup

GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Potentially easier to achieve strong coupling than with NVs

Collaboration with Andersen group, DTU

Experimental setup

GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Cavity measurements

Potentially easier to achieve strong coupling than with NVs

Experimental setup
GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Cavity measurements

Potentially easier to achieve strong coupling than with NVs

Experimental setup

Collaboration with Andersen group, DTU

GeV defects

- Much larger ZPL fraction ~60%
- Lower spectral diffusion
- Poor spin coherence
- Quantum yield?

Cavity measurements

Potentially easier to achieve strong coupling than with NVs

Experimental setup

Collaboration with Andersen group, DTU

Jensen,* Janitz,* et al, Phys. Rev. Applied 2020

Challenge: tunability AND stability at 4K

- Search for ideal membrane thickness, low loss
- Find "nice" NV

- Locked within ~ few picometers length
- In presence of cryostat noise!

Translation stages are floppy!

Use a closed-cycle cryostat (!?!)

Use a closed-cycle cryostat (!?!)

Qlibri platform with active (side of fringe) stabilization below 1 kHz

- < 30 pm-rms during the whole cycle possible,
- ~ 20 pm-rms during "quiet times" (measurements taken with >100 pm-rms)

Commercial cryogenic vibration isolation platform

Use a closed-cycle cryostat (!?!)

Observe $F_P \sim 4 \ (C \sim 0.04)$ for NVs with resonant excitation

Commercial cryogenic vibration isolation platform

Measurements taken with $\sim 180~\text{pm-rms}$ vibration

Finesse ~ 2000, air-like mode

Idea: Monitor error signal to measure residual motion (while locked or unlocked)

Idea: Monitor error signal to measure residual motion (while locked or unlocked)

Idea: Monitor error signal to measure residual motion (while locked or unlocked)

Error signal \propto cavity length

Compressor off, locked:

Idea: Monitor error signal to measure residual motion (while locked or unlocked)

Error signal \propto cavity length

Compressor off, locked:

Idea: Monitor error signal to measure residual motion

Compressor off, locked:

Idea: Monitor error signal to measure residual motion

Microcavity residual motion: error signal and transmission

Note:

- in LFGL mode
- at 300K

Microcavity residual motion: error signal and transmission

Microcavity residual motion: error signal and transmission

Surprise #1: Hugely lower vibrations when unlocked ($\sim 1 \text{ nm-rms} \rightarrow \sim 60 \text{ pm-rms}$) Surprise #2: Locking was not particularly helpful

Surprise #1: Hugely lower vibrations when unlocked ($\sim 1 \text{ nm-rms} \rightarrow \sim 60 \text{ pm-rms}$) Surprise #2: Locking was not particularly helpful

Surprise #1: Hugely lower vibrations when unlocked (~ 1 nm-rms \rightarrow ~ 60 pm-rms) Surprise #2: Locking was not particularly helpful

Surprise #1: Hugely lower vibrations when unlocked ($\sim 1 \text{ nm-rms} \rightarrow \sim 60 \text{ pm-rms}$) Surprise #2: Locking was not particularly helpful

Prospects for cooperativity > 1

Challenge: Fiber cavity geometry

Riedel et al. PRX **7** 031040 (2017)

ROC = $16 \,\mu$ m Air gap = $2 \,\mu$ m

Challenge: NV optical coherence properties

Challenge: Membrane losses

Challenge: Vibrations
Challenge: Fiber cavity geometry

Riedel et al. PRX 7 031040 (2017)

Challenge: NV optical coherence properties

ROC = $16 \,\mu m$ Air gap = $2 \mu m$

 γ_d = 86 MHz

Challenge: Fiber cavity geometry

Riedel et al. PRX **7** 031040 (2017)

ROC = $16 \mu m$ Air gap = $2 \mu m$

Challenge: NV optical coherence properties

Challenge: Membrane losses

Jensen, Janitz, et al. PRApplied 13 064016 (2020)

 γ_d = 86 MHz

Finesse 11,000 in a diamond-like mode

Challenge: Fiber cavity geometry

Riedel et al. PRX **7** 031040 (2017)

Challenge: NV optical coherence properties

Challenge: Membrane losses

Challenge: Vibrations

ROC = $16 \,\mu$ m Air gap = $2 \,\mu$ m

 γ_d = 86 MHz

Finesse 11,000 in a diamond-like mode

Challenge: Fiber cavity geometry

Riedel et al. PRX **7** 031040 (2017)

DBR		SiO ₂
diamond		🗘 0 - 3 μm
DBR	→ ← 1 μm	SiO ₂

Challenge: NV optical coherence properties

Challenge: Membrane losses

Challenge: Vibrations

ROC = $16 \,\mu$ m Air gap = $2 \,\mu$ m

 γ_d = 86 MHz

Finesse 11,000 in a diamond-like mode

 σ = 16 pm-rms

What's next...

Passive stability is good enough to get started! Experiments ongoing with the same GeV sample

Improved locking: Move to lower finesse wavelength for locking light Stiffen/dampen the tripod support

Yet better membranes:

Need to understand loss mechanisms and systematically explore mitigation approaches

Goal:

Combine improved stability + lower-loss membranes + "nice" defects to aim for C > 1

Thanks to

Loncar lab: Pawel Latawiec, Srujan Meesala Lukin lab: Mihir Bhaskar, Ruffin Evans (Harvard University)

Sankey lab: Tina Muller, Alex Bourrassa Andersen lab: Rasmus Jensen (DTU) Western Digital: Pat Braganca

FONDATION CANADIEN

de recherche du Canada

Canada Research Chairs

...and you for your attention