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Coupling diamond defect centers to 
high-finesse optical microcavities



Motivation: a solid-state spin-photon interface

Matter 
node

Quantum networks
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The NV center in diamond
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The vision: 
• A few-spin-qubit register with preparation, 

coherent control, and measurement

• Scalability via optical connections

Spin-photon 
entanglement
Togan et al. 2010  
Nature

Quantum interference

Coincidence detection 
 leaves spins entangled
Bernien et al 2013 Nature

Connecting quantum nodes: heralded entanglement

N

V

Challenge: efficiency
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BUT: 

Only 3% of emission is in ZPL

Dephasing: Detection window 
needed to render photons 
indistinguishable 

Δ𝑡𝑡 ~
1
𝛾𝛾 << 𝜏𝜏
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state 
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Connecting quantum nodes: heralded entanglement

To improve efficiency:
• Good photon collection 

efficiency into single mode
• Enhanced ZPL emission
• Decreased radiative lifetime

Many protocols require two photon 
detections for high fidelity
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Overcoming spectral diffusion

• Avoid nanofabrication

• Do the hard work
• Better annealing and 

fabrication recipes
• Careful surface science
• Repeatability…

PRX 9, 031052 (de Leon group)

• Stop using NVs
SiV- defects
• Large ZPL fraction
• Reduced spectral diffusion
• Spin coherence poor above 1K
• Low quantum efficiency 
Others…?

Science 362, 662 (2018) (Lukin group)
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Open geometry Fabry-Perot micro-cavities

Cavity quantum electrodynamics

Emission on cavity resonance enhanced by

Finesse F ~ 
number of 
round trips

External, free-space cavities

Cavity waist w0

based on optical fibers

Fp ≈ few thousand potentially feasible 

Tunable cavity with excellent out-coupling for collection efficiency 
…and potentially cavity quantum electrodynamics 

ENS Paris 2010

w0 ~ few λ
F > 105

already 
achieved

Optical 
fiber

Diamond Length drops out

Mirrors

NJP 12, 065038 (2010)



Laser-ablated fiber tip

Laser ablation:  
Well-controlled

● laser power
● mode shape
● alignment precision 

(0.5 microns)

< 0.2 nm 
roughness

0.2 nm roughness

Laser-ablated fiber

ROC down to ~ 20 𝜇𝜇m

For 𝐿𝐿 ≪ 𝑅𝑅𝑅𝑅𝐶𝐶, 𝐹𝐹𝑃𝑃 ∝ 1/ 𝑅𝑅𝑅𝑅𝐶𝐶



Alternate approaches: 

FIB milling

Effective ROC 
down to 4.3 𝜇𝜇m

Aurélien A. P. Trichet, Philip R. Dolan, David M. Coles, Gareth M. Hughes, Jason M. Smith, "Topographic control of open-access microcavities 
at the nanometer scale," Opt. Express 23, 17205-17216 (2015); https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-13-17205Opt. Express 23, 17205-17216 (2015) (Smith group) 

Combine photolithography 
with CO2 laser ablation:

Published in: Daniel Najer; Martina 
Renggli; Daniel Riedel; Sebastian 
Starosielec; Richard J. Warburton; 
Appl. Phys. Lett. 110, 011101 (201 7)
DOI: 10.1063/1.4973458
Copyright © 2017 Author(s)

Appl. Phys. 
Lett. 110,

011101 (2017) 
(Warburton 

group)



Building fiber cavities:
Bare cavity:



Membrane-in-cavity system

Membrane bonded by 
van der Waals forces

Challenges:

• High quality NV centers in membranes

• Low membrane scattering and 
absorption

• Cavity stabilization (at the pm level) 
in a cryogenic environment



I. NVs in membranes

Idea: work with few-micron thick membranes, electron irradiated, sliced, ArCl2 / O2 etched

=> Comparable to results in bulk 
electronic-grade samples

Nano Letters 19, 3987 (2019), TU Delft

• Single-scan linewidths as low as 25 MHz 
(TU Delft measurement on our irradiated 
sample)

• Spectral diffusion ~ 300 MHz (average)

More detailed study (TU Delft):
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=> Comparable to results in bulk 
electronic-grade samples

Nano Letters 19, 3987 (2019), TU Delft

• Single-scan linewidths as low as 25 MHz 
(TU Delft measurement on our irradiated 
sample)

• Spectral diffusion ~ 300 MHz (average)

More detailed study (TU Delft):

down to ~ few 𝝁𝝁m
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Membrane losses

Distinguishing bulk from surface losses:

m
irrorm

irr
or

diamond
Antinode at surface 
⇒ surface losses matter more!
⇒ Lower finesse

Node at surface 
⇒ surface losses matter less!
⇒ Higher finesse

m
irrorm

irr
or

diamond

“diamond-like 
mode”

“air-like 
mode”

Calculation of cavity finesse with

Fi
ne

ss
e

“air-like”“diamond-like”

Resonant wavelength (nm)



Surface losses
• Improved etching techniques (ArCl2 + O2) => 

reduced surface losses

𝜎𝜎 = 0.64 8 nm rms roughness
Surface loss equivalent to 

• Results inconsistent with AFM results of 
𝜎𝜎 ≈ 0.25 nm-rms

=> surface absorption/contamination
• Can now see finesse > 10,000 in diamond-like 

modes (sometimes)

See also Van Dam et al, NJP 2018



Fiber mirror

Figure from Albrecht et al PRL 2013

The “bad emitter regime:” coupling phonon broadened emission to fiber cavities

Nanodiamond systems:
Becher, Hunger,  Smith 

Use to explore cavity coupling to defects in membranes

𝝹𝝹𝝲𝝲*

cavityemitter

Can generate single photons with greater spectral density

Total photon emission fraction into 
cavity:

∝ 1/mode volume, 
independent of finesse

F = purcell factor

Room temperature cavity coupling

𝛽𝛽 ≈
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝛾𝛾∗
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Room temperature cavity coupling

Jensen,* Janitz,* et al, Phys. Rev. Applied 2020

Confocal Cavity

Finesse = 
11,000

Careful accounting of losses & excitation efficiency
⇒ Estimate 𝛽𝛽 = 0.4 ± 0.1%
⇒ Photon spectral density enhanced by 30±10

In a diamond-like mode!



III. Cavity stabilization
Challenge: tunability AND stability at 4K

• Search for ideal membrane 
thickness, low loss

• Find “nice” NV
• Locked within ~ few picometers length
• In presence of cryostat noise!

Translation stages are floppy!



  
  

III. Cavity stabilization

Use a bath cryostat

D. Riedel, Ph.D. Thesis (2017)

acoustic shielding
Active vibration 
isolation

⇒ 24 pm-rms vibration 
between 0-200 Hz

= linewidth of a F = 13,000 cavity

• 𝐶𝐶 ∼ 0.03 (𝛾𝛾𝐷𝐷= 1 GHz)

Riedel et al. PRX 7
031040 (2017)

• 𝐹𝐹𝑃𝑃 ∼ 20− 40

Finesse = 5260, air-like mode
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Use a closed-cycle cryostat (!?!)

Commercial cryogenic 
vibration isolation platform

Ruf et al. arXiv 2009.08204 (2020), TUDelft

Down to ~ 50 pm-rms
during “quiet times”

< 30 pm-rms during the whole cycle possible, 
∼ 20 pm-rms during ”quiet times”
(measurements taken with >100 pm-rms)

Qlibri platform with active (side of fringe) 
stabilization below 1 kHz
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1535 nm (F = 5000)

Casabone et al. arXiv 2001.08532 (2020), ICFO



III. Cavity stabilization

Use a closed-cycle cryostat (!?!)

Commercial cryogenic 
vibration isolation platform

Down to ~ 50 pm-rms
during “quiet times”

Ruf et al. arXiv 2009.08204 (2020), TUDelft

Observe 𝐹𝐹𝑃𝑃 ∼ 4 (𝐶𝐶 ∼ 0.04) for NVs with 
resonant excitation

Measurements taken with ∼ 180 pm-rms vibration

Ruf et al. arXiv 2009.08204 (2020), TUDelft

Finesse ~ 2000, air-like mode
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Characterizing microcavity residual motion
Idea: Monitor error signal to measure residual motion

Error signal ∝ cavity length 

(while locked or unlocked)
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Microcavity residual motion: error signal and transmission
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Transmission

Error signal

Si
gn

al
 (m

V)
Si

gn
al

 (m
V)

Change in cavity length (pm)
-75     -50     -25      0        25       50      75     100

12.5
10

7.5
5

2.5

100
50

0
-50

-100

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

200

0

-200

Er
ro

r 
sig

na
l (

m
V)

Compressor on:

Tr
an

sm
iss

io
n 

sig
na

l (
m

V) 20

10

0 Note: 
• in LFGL 

mode
• at 300K



Microcavity residual motion: error signal and transmission
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Performance at low temperature

Surprise #1: Hugely lower vibrations when unlocked (∼ 1 nm-rms → ∼ 60 pm-rms)

Surprise #2: Locking was not particularly helpful
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Surprise #1: Hugely lower vibrations when unlocked (∼ 1 nm-rms → ∼ 60 pm-rms)

Surprise #2: Locking was not particularly helpful
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16 pm-rms vibrations

Corresponds to a modest 
reduction in Purcell factor for 
currently achievable finesse
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Prospects for cooperativity > 1

Challenge: Fiber cavity geometry

Challenge: NV optical coherence properties

Challenge: Membrane losses

Challenge: Vibrations

Riedel et al. PRX 7
031040 (2017)

ROC = 16 𝜇𝜇m

Air gap = 2 𝜇𝜇m

𝛾𝛾𝑑𝑑 = 86 MHz

Finesse 11,000 in a 
diamond-like mode
𝜎𝜎 = 16 pm-rms

𝐹𝐹𝑃𝑃 ≈ 250

𝐶𝐶 ≈ 1



What’s next…

Improved locking:
Move to lower finesse wavelength for locking light
Stiffen/dampen the tripod support

Passive stability is good enough to get started!
Experiments ongoing with the same GeV sample

Goal:
Combine improved stability + lower-loss 
membranes + “nice” defects to aim for C > 1

Yet better membranes:
Need to understand loss mechanisms and 
systematically explore mitigation approaches



…and you for your attention

Loncar lab: Pawel Latawiec, Srujan Meesala
Lukin lab: Mihir Bhaskar, Ruffin Evans

(Harvard University)

Sankey lab: Tina Muller, Alex Bourrassa
Andersen lab: Rasmus Jensen (DTU)
Western Digital: Pat Braganca

Erika Janitz

Rigel Zifkin

Cesar Rodriguez 
Rosenblueth

Thanks to….
Yannik Fontana
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