Designing High Performance Devices in Silicon Using Subwavelength Structures

Presented by:

The OSA Optoelectronics (PO) Technical Group Welcomes You!

27 September 2018 • 10:00 EDT

Optoelectronics Technical Group

OSA

Technical Group Leadership 2018

Chair **Winnie Ye** Carleton University, Canada Vice Chair Daniele Melati National Research Council Canada, Canada

Technical Group at a Glance

• Focus

- This group's interests are in the field of semiconductor lasers, amplifiers, LEDs and super luminescent diodes.
- Over 4,500 members within OSA

Mission

- To benefit <u>YOU</u>
- Webinars, e-Presence, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact <u>winnie.ye@carleton.ca</u>

Find us here

- Website: <u>www.osa.org/OptoelectronicsTG</u>
- LinkedIn: <u>www.linkedin.com/groups/8297718/</u>

Today's Webinar

Designing High Performance Devices in Silicon Using Subwavelength Structures

Prof. Robert Halir

University of Malaga (Spain) Andalusian Institute for Nano-medicine and Biotechnology (Bionand)

You can find more information about subwavelength integrated photonics on the **review** co-authored by Dr. Halir and recently published by **Nature**: P. Cheben, et al. "<u>Subwavelength integrated photonics</u>." Nature 560.7720 (2018)

Designing high performance devices in silicon using subwavelength structures

Robert Halir, Universidad de Málaga (Spain), www.photonics-rf.uma.es

Many thanks to:

National Research Council Canada

Íñigo Molina-Fernández
Gonzalo Wangüemert-Pérez
Alejandro Ortega-Moñux
Alejandro Sánchez-Postigo
Jose Manuel Luque-González
Daniel Pereira-Martín
Abdel Hadij El Houati
Darío Sarmiento-Merenguel

Aitor Villafranca Alaine Herrero David González Pavel Cheben Jens Schmid Jean Lapointe Dan Xia Xu Siegfried Janz

Goran Mashanovich Jordi Soler Penadés Milan Nedjelkovich

Laurent Vivien Carlos Alonso-Ramos Daniel Benedikovic

Jiri Ctyroky

Why silicon photonics?

- Silicon microelectronics (the "age of silicon")
- High contrast (Δn=2), small features (≈100nm)
- High speed photodetection and modulation
- Hybrid integration of III-V lasers
- Commercial use: Luxtera, Acacia, ...
- Only a few CMOS compatible materials available.

<u>"Handbook of Silicon Photonics", Laurent Vivien, 2013</u> + <u>"Silicon Photonics Design" Lukas Chrostowski, Online course</u> <u>"Silicon photonics circuit design" Wim Bogaerts, Laser and Photonics Reviews 12, 2018</u>

Fiber Core

Si-wire

Optical

Review paper: R. Halir et al., Laser and Photonics Reviews 9, 2015

nature > review articles > article nature > review articles > article International journal of science

Review Article | Published: 29 August 2018

Subwavelength integrated photonics \sum_{x}

Pavel Cheben ^M, Robert Halir, Jens H. Schmid, Harry A. Atwater & David R. Smith

Nature **560**, 565–572 (2018) | Download Citation *↓*

 $\varphi_{1}(\mathbf{x})$

 $\varphi_{2}(\mathbf{X})$

 $\varphi_3(\mathbf{x})$

 $\varphi_{A}(\mathbf{X})$

b φ_(x)

10 µm

P. Cheben et al., Nature 560, 2018

This webinar is not about...

Metasurfaces

P. Lalanne, J. Opt. Soc. Am. A 16, 1999 M. Khorasaninejad, Nano Lett. 16, 2016

Inverse design

A. Y. Piggot, Nature Photonics 9, 2015 B. Shen, Nature Photonics 9, 2015

Robert Halir, OSA Optoelectronics Technical Group, Webinar, September 27 2018

Review Article | Published: 28 April 2017

Metamaterial-inspired silicon nanophotonics

Isabelle Staude & Jörg Schilling 🔀

Nature Photonics 11, 274–284 (2017) Download Citation 🚽

I. Staude, Nature Photonics 11, 2017

Refractive Index

Fundamentals

Applications & Devices

Dispersion & Anisotropy

Fundamentals

Applications & Devices

Small pitch [$\Lambda < \lambda/(2n_{eff})$] avoids diffraction. Synthesizes an artificial material.

$$n_{xx}^2 \approx \frac{L}{\Lambda} n_{Si}^2 + \left(1 - \frac{L}{\Lambda}\right) n_{SiO_2}^2 \qquad n_{zz}^{-2} \approx \frac{L}{\Lambda} n_{Si}^{-2} + \left(1 - \frac{L}{\Lambda}\right) n_{SiO_2}^{-2} \qquad \text{S. M. Rytov, Sov. Phys. JETP 2, 1956}$$

Rigorous formulas for $n_{\chi\chi}$ and n_{ZZ} : Luque-González, Optics Letters 43, 2018

Subwavelength grating (SWG) waveguide

Small pitch [$\Lambda < \lambda/(2n_{eff})$] avoids diffraction. Synthesizes an artificial material.

$$n_{xx}^2 \approx \frac{L}{\Lambda} n_{Si}^2 + \left(1 - \frac{L}{\Lambda}\right) n_{SiO_2}^2 \qquad n_{zz}^{-2} \approx \frac{L}{\Lambda} n_{Si}^{-2} + \left(1 - \frac{L}{\Lambda}\right) n_{SiO_2}^{-2} \qquad \text{S. M. Rytov, Sov. Phys. JETP 2, 1956}$$

Engineer the refractive index through duty-cycle.

- SWG waveguide has lower effective index than the silicon wire.
- SWG waveguide supports loss-less Bloch-Floquet mode.
- Loss-less integration with silicon wire waveguides.

Reduced effective index: substrate leakage for $n_{\rm eff} < 1.6$

J. D. Sarmiento-Merenguel, Optics Letters 41, 2016

Subwavelength grating (SWG) waveguide

Disorder (jitter) of ~5nm produces losses for wide (multimode) waveguides.

A. Ortega-Moñux, Optics Express 25, 2017

Refractive Index

Fundamentals

Applications & Devices

Dispersion & Anisotropy

Fundamentals

Applications & Devices

Fiber-to-chip coupling

Grating couplers

R. Halir, Optics Letters 34, 2009

Fiber-to-chip coupling

Grating couplers

Silicon – near infrared

D. Benedikovic, Optics Express 23, 2015

Germanium – mid infrared

J. Kang, Optics Letters 42, 2017

Enhanced cladding interaction

$$\Delta n_{eff} = c \int \Delta n(x, y)^2 \mid E(x, y) \mid^2 dx dy$$

Delocalize field

J. G. Wangüemert-Pérez, Optics Letters 39, 2014 + J. G. Wangüemert-Pérez, Optics Laser Technol. 109, 2019

Enhanced cladding interaction

Sensors and modulators

J. G. Wangüemert-Pérez, Optics Letters 39, 2014 + J. G. Wangüemert-Pérez, Optics Laser Technol. 109, 2019

Demonstration of enhanced bulk sensing <u>Flueckiger, Optics Express 24, 2016</u> Demonstration of surface sensing H. Yan, Optics Express 24, 2016

Enhanced cladding interaction

Sensors and modulators

Electro-optic polymer 40GHz bandwidth

Z. Pan, Laser and Photonics Reviews 12, 2018

580nm / RIU

E. Luan, J. Selected Topics Quantum Eletronics 25, 2018

Single-mode waveguide bends

Z. Wang, Optics Letters 41, 2016

H. Xu, Laser and Photonics Reviews 12, 2018

Polarization management

Y. Xiong, Optics Letters 39, 2014 + Y. He, OFC 2017, Th1G.6

Polarization independent coupler

L. Liu, Optics Letters 41, 2016

Narrow Bragg filters

D. Pérez-Galacho, Optics Letters 42, 2017 + J. Ctyroky, Optics Express 26, 2018 + P. Cheben, ECOC 2018, Invited

Mid-IR suspended waveguides

R. Soref, Nature Photonics 4, 2010

J. Soler Penadés, Optics Letters 39, 2014

Suspended waveguide at 7.7µm

J. Soler Penadés, Optics Letters 43, 2018

Suspended, slotted rings at 2.2µm

W. Zhou, J. Applied Physics 123, 2018

Refractive Index

Fundamentals

Applications & Devices

Dispersion & Anisotropy

Fundamentals

Applications & Devices

Anisotropic and dispersive properties

Refractive Index

Fundamentals

Applications & Devices

Dispersion & Anisotropy

Fundamentals

Applications & Devices

Exploiting dispersion

Broadband directional coupler

5x bandwidth enhancement

R. Halir, Optics Express 20, 2012 + Y. Wang, IEEE Photonics J. 8, 2016

Exploiting anisotropy

Densely spaced waveguides

S. Jahani, Nature Communications 9, 2018 + A. Khavasi, Photonics Technol. Letters 28, 2016

Exploiting anisotropy & dispersion

Broadband beam-splitter

R. Halir, Laser and Photonics Reviews, 2016

$$n_{xx}^2 \approx \frac{L}{\Lambda} n_{Si}^2 + \left(1 - \frac{L}{\Lambda}\right) n_{SiO_2}^2$$

Wide index range Small feature sizes Both polarizations affected equally

Tilted Sub-λ structures

Concept

$$\tilde{\boldsymbol{\varepsilon}} = R^{-1}(\theta) \begin{bmatrix} n_{xx}^2 & 0 & 0 \\ 0 & n_{xx}^2 & 0 \\ 0 & 0 & n_{zz}^2 \end{bmatrix} R(\theta)$$

Luque-González, Optics Letters 43, 2018

Robert Halir, OSA Optoelectronics Technical Group, Webinar, September 27 2018

Ľř

Tilted Sub- λ structures

Simulation

Engineer TE effective index with constant feature size! TM unaffected!

Luque-González, Optics Letters 43, 2018

Tilted Sub-λ structures

Experiment

Tilted Sub-λ structures

Application

Extinction ratio > 20dB Insertion Losses < 1.5dB 120nm bandwidth (3D FDTD)

A. Herrero, Optics Letters, submitted

Conclusions

Thank you!

FPU16/06762

QUESTIONS? photonics-rf.uma.es

 $n = \begin{bmatrix} n_{xx} & 0\\ 0 & n_{zz} \end{bmatrix}$ $\left(\frac{k_x}{n_{zz}}\right)^2 + \left(\frac{k_z}{n_{xx}}\right)^2 = k_0^2$

Simulation – Floquet modes and 3D FDTD

