WE ARE 心N

Diffraction Induced Entanglement Losses

Giacomo Sorelli, Laboratoire Kastler Brossel

OSA Technical Groups

Create lasting, valuable connections.

Engaging communities Innovative events Focused networking Enriching webinars

osa.org/technicalgroups

Technical Group Leadership 2020

Chair: <u>Dr. Graciana Puentes</u> University of Buenos Aires, AR

Vice-Chair: Dr. Lee Bassett University of Pennsylvania, US

Webinars Officer: Prof. Pablo Bianucci Concordia University, CA

Liason with Industry: Dr. <u>Mo Soltani</u> Raytheon BBN Technologies, US

Events Officer: <u>Dr. Sara Mouradian</u> UC Berkeley, US

Our Technical Group at a Glance

- Nearly 3000 members worldwide!
- Our Webpage https://www.osa.org/oq we post news regularly
- Engagement activities: Webinars, Networking Events, Campfire Sessions, etc
- Suggestions, ideas for events, email us at <u>OSA TGActivities/gpuentes@df.uba.ar</u>
- Nominated 20x20 talks for our latest event at Quantum 2.0

Trevor Steiner (UCSB)

Xuejian Wu (UCBerkeley)

Michael Grace (UArizona)

Welcome to the Quantum Optical Science and Technology Technical Group Webinar!

Diffraction Induced Entanglement Losses

Giacomo Sorelli

Electromagnetism and Radar department (DEMR), ONERA, Palaiseau Multimode Quantum Optics Group, Laboratoire Kastler Brossel, Paris Quantum Information Group, LIP6, Paris Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

> 30/09/2020 OSA Technical Group webinar

Motivation: Quantum Communication

Ekert, PRL 67, 661 (1991)

- Information usually encoded in polarization qubits
- The use of qudits allows
 - increased channel capacity
 - enhanced security of quantum key distribution
 - Cerf et al., PRL 88, 127902 (2002)
 - enhanced non-locality Dada et al., Nat. Phys. 7, 677 (2011)

Orbital Angular Momentum

 $u(r, \theta, z) = R(r, z)e^{il\theta} \rightarrow \text{well defined OAM } \hbar l$ Discrete, infinite dimensional Hilbert space \longrightarrow good for qudits!

Laguerre-Gauss modes

3 / 15

Bessel-Gauss modes

Deterministic distortions:

e.g. Diffraction on obstrucions

Random distortions:

e.g. turbulence distortions

Deterministic distortions:

Random distortions:

e.g. Diffraction on obstrucions

e.g. turbulence distortions

Distortions induce crosstalk!

Deterministic distortions:

Random distortions:

e.g. Diffraction on obstrucions

e.g. turbulence distortions

Distortions induce crosstalk!

G. Sorelli et al. New J. Phys. (2019)

Deterministic distortions:

e.g. Diffraction on obstrucions

Today's talk!

Maybe next time...

- 1. Entanglement of diffracted states: general formula
- 2. Entanglement losses and radial structure
- 3. Entanglement losses induced by angular uncertainty
- 4. Outline and conclusion

Setup and initial state

Maximally entangled two-photon states:

$$\psi_0\rangle = \frac{|l_0, -l_0\rangle + |-l_0, l_0\rangle}{\sqrt{2}}$$

Single photon states:

$$\left|\pm l_{0}\right\rangle = \int d\mathbf{r} u_{\pm l_{0}}(\mathbf{r}) \left|\mathbf{r}\right\rangle$$

Setup and initial state

Maximally entangled two-photon states:

$$|\psi_0\rangle = \frac{|l_0, -l_0\rangle + |-l_0, l_0\rangle}{\sqrt{2}}$$

Single photon states:

$$|\pm l_0\rangle = \int d\mathbf{r} u_{\pm l_0}(\mathbf{r}) |\mathbf{r}\rangle$$

 $u_{\pm l_0}$ can be arbitrary orthogonal spatial modes...

Setup and initial state

Maximally entangled two-photon states:

$$|\psi_0\rangle = \frac{|l_0, -l_0\rangle + |-l_0, l_0\rangle}{\sqrt{2}}$$

Single photon states:

$$|\pm l_0\rangle = \int d\mathbf{r} u_{\pm l_0}(\mathbf{r}) |\mathbf{r}\rangle$$

 $u_{\pm l_0}$ can be arbitrary orthogonal spatial modes... ...in this talk: $u_{\pm l_0}$ modes with opposite OAM!

Diffraction of single photons

$$\begin{split} |\pm l_0\rangle &= \int d\mathbf{r} u_{\pm l_0}(\mathbf{r}) |\mathbf{r}\rangle \xrightarrow{diffraction} |\psi_{\pm l_0}\rangle = \int d\mathbf{r} \psi_{\pm l_0}(\mathbf{r}) |\mathbf{r}\rangle \\ \psi_{\pm l_0}(x,y) &= \mathcal{F}^{-1} \left\{ T(k_x,k_y)\mathcal{F} \left[t(x,y) u_{\pm l_0}(x,y) \right] \right\} \\ t(x,y) : \text{obstacle transmission function} \\ \text{Fresnel (angular-spectrum) propagator} \\ T(k_x,k_y) &= \exp[ikz - (k_x^2 + k_y^2)z/2k] \end{split}$$

Crosstalk:

$$|\psi_{\pm l_0}
angle = \sum_l C_{l,\pm l_0} |l
angle$$

$$C_{l,\pm l_0} = \int d\mathbf{r} u_l^*(\mathbf{r}) \psi_{\pm l_0}(\mathbf{r})$$

 $\begin{array}{c} \textbf{General approach:} \\ \textbf{Quantify the coefficients } C_{l,\pm l_0} \\ \textbf{(work in the OAM basis)} \\ \textbf{Our approach:} \\ \textbf{Work with the non-orthogonal} \\ \textbf{modes } \psi_{\pm l_0}(\mathbf{r}) \end{array}$

Entanglement of diffracted biphotons

$$b = \int \psi^{d\,*}_{-l_0}(\mathbf{r})\psi^{d}_{l_0}(\mathbf{r})d\mathbf{r}$$

Concurrence:

$$C(|\Psi\rangle) = \sqrt{2\left(1 - \text{Tr}[\varrho_1^2]\right)}$$

Entanglement of diffracted biphotons

$$b = \int \psi_{-l_0}^{d\,*}(\mathbf{r}) \psi_{l_0}^{d}(\mathbf{r}) d\mathbf{r}$$

Entanglement only depends on b!

$$C(|\Psi\rangle) = \sqrt{2(1 - \text{Tr}[\varrho_1^2])}$$

= $\frac{1 - b^2}{1 + b^2}$ 9 / 15

Role of radial structure on entanglement loss

Role of radial structure on entanglement loss

$$C(|\Psi\rangle) = \frac{1-b^2}{1+b^2}$$

 $b \rightarrow 0$ for $d/a \rightarrow 0$ (no OAM change) l_0 -dependent b modulations: phase plays a role!

Entanglement of multi-ring modes is more robust!!

Angular position and momentum uncertainty relation:

Maximally entangled states diffracted on angular apertures:

Mutual overlap:

b decays faster for larger l_0 :

1. Δl independent on l_0

2. Finer phase structure

 $\Delta\phi$ is effectively smaller!!

What if we rescale $\Delta \phi$ with l_0 ?

 $0 \leq \Delta \phi \lesssim 1 \rightarrow \text{Gaussian approximation: } b \approx e^{-2(l_0 \Delta \phi)^2}$ Concurrence: $C = \frac{1-b^2}{1+b^2} \approx \tanh\left(2l_0^2 \Delta \phi^2\right)$

Conclusion and outlook

- ! Simple analytical formula for diffracted maximally-entangled qubits
- ! Multi-ring modes are more robust against diffraction G Sorelli, VN Shatokhin, FS Roux, A Buchleitner, *Phys. Rev. A 97 (1), 013849* (2018)
- ! Universal entanglement loss induced by angular uncertainty G Sorelli, VN Shatokhin, A Buchleitner, *Journal of Optics 22 (2), 024002* (2020)
- ? Generalization to more general/high-dimensional states
- ? Diffraction as preparation and not disturbance

G Puentes, OSA Continuum 3, 1616-1632 (2020)

Thanks to my coworkers:

Filippus Stef Roux Andreas Buchleitner Slava Shatokhin

Thanks to my coworkers:

Andreas Buchleitner Slava Shatokhin

Thank you for your attention!

Filippus Stef Roux