
Diffraction Induced 
Entanglement Losses
Giacomo Sorelli, Laboratoire Kastler Brossel





Technical Group Leadership 2020

Chair: Dr. Graciana Puentes 
University of Buenos Aires, AR

Vice-Chair: Dr. Lee Bassett 
University of Pennsylvania, US

Liason with Industry: Dr. Mo Soltani
Raytheon BBN Technologies, US

Webinars Officer: Prof. Pablo Bianucci 
Concordia University, CA

Events Officer: Dr. Sara Mouradian 
UC Berkeley, US



Our Technical Group at a Glance
• Nearly 3000 members worldwide!

• Our Webpage https://www.osa.org/oq we post news regularly

• Engagement activities: Webinars, Networking Events, Campfire Sessions, etc

• Suggestions, ideas for events, email us at OSA TGActivities/gpuentes@df.uba.ar

• Nominated 20x20 talks for our latest event at Quantum 2.0

Xuejian Wu (UCBerkeley) Michael Grace (UArizona)Trevor Steiner (UCSB)

https://www.osa.org/oq
mailto:TGActivities/gpuentes@df.uba.ar


Welcome to the Quantum Optical 
Science and Technology Technical 

Group Webinar!



Diffraction Induced Entanglement Losses

Electromagnetism and Radar department (DEMR), ONERA, Palaiseau
Multimode Quantum Optics Group, Laboratoire Kastler Brossel, Paris

Quantum Information Group, LIP6, Paris
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

Giacomo Sorelli

OSA Technical Group webinar
30/09/2020



Motivation: Quantum Communication

1 Introduction

1.1 Quantum Communication and Quantum Key Distri-
bution

In general, quantum communication describes the process of transferring a quan-
tum state from one place to another. Physically, there exist di↵erent types of
communication channels that allow this. For instance, optical fibers or free space
can be used for this purpose. Nowadays, one of the main motivations for quan-
tum communication is the quantum key distribution, which allows a secure key
generation between sender and receiver. Fundamental principles of quantum me-
chanics dictate that the measurement disturbs the transfered state, allowing for
a detection of an eavesdropper [1].

Alice Bob

QM channel

classical channel

Alice Bob

QM channels

classical channel

(a)                                                       (b)

Figure 1.1: Example configurations of quantum communication. Figure (a)
illustrates a simple example, where the sender, called Alice, transfers a secret key
to the receiver, called Bob. Figure (b) depicts a more complex case where a sender
in the middle emits two entangled photons, one for Alice and one for Bob. This
example represents the configuration considered in the present thesis. Note that
in any case a classical channel is required to exchange information about the used
bases.

Figure 1.1 illustrates di↵erent possibilities of the quantum key distribution se-
tups between the sender (Alice), and the receiver (Bob). Note that both depicted

11

Ekert, PRL 67, 661 (1991)

• Information usually encoded in polarization qubits
• The use of qudits allows

• increased channel capacity
• enhanced security of quantum key distribution

Cerf et al., PRL 88, 127902 (2002)

• enhanced non-locality Dada et al., Nat. Phys. 7, 677 (2011)
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Orbital Angular Momentum
u(r, θ, z) = R(r, z)eilθ → well defined OAM ~l

Discrete, infinite dimensional Hilbert space −→ good for qudits!
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Laguerre-Gauss modes

• p+ 1 intensity rings
• ring radius:√

(2p+ |l|+ 1)/2w(z)

uLGp,l (ρ, φ, z) = Cp,l
w(z)

(√
2ρ

w(z)

)|l|
L|l|p

(
2ρ2

w(z)2

)
exp

(
− ρ2

w(z)2

)
× exp

(
ikρ2z

2(z2 − z2
R)

)
exp (ilφ) exp [−iΦ(p, l; z)]
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Bessel-Gauss modes

• κw0 . 1→ single ring
• κw0 & 1→ multi ring
• z . w0k/κ

non-diffracting

uBGκ,l (ρ, φ, z) =Cl
w0

w(z) exp (ilφ) exp
[
i

(
κ2

2k

)
z − Φ(z)

]
×Jl

(
κρzR
zR + iz

)
exp

[(
− 1
w2(z) −

ik

2R(z)

)(
ρ2 + κ2z2

k2
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Spatial modes are sensitive to disturbances

Random distortions:

e.g. turbulence distortions

Deterministic distortions:

e.g. Diffraction on obstrucions

Distortions induce crosstalk!
G. Sorelli et al. New J. Phys. (2019)

Today’s talk! Maybe next time...
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Outline of the talk

1. Entanglement of diffracted states: general formula
2. Entanglement losses and radial structure
3. Entanglement losses induced by angular uncertainty
4. Outline and conclusion
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Setup and initial state

Source

Detector

Detector
Obstruction

Obstruction

d
2a

L

Maximally entangled two-photon states:

|ψ0〉 = |l0,−l0〉+ |−l0, l0〉√
2

Single photon states:

|±l0〉 =
∫
dru±l0(r) |r〉

u±l0 can be arbitrary orthogonal spatial modes...
...in this talk: u±l0 modes with opposite OAM!
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Diffraction of single photons

|±l0〉 =
∫
dru±l0(r) |r〉 diffraction−−−−−−−→ |ψ±l0〉 =

∫
drψ±l0(r) |r〉

ψ±l0(x, y) = F−1 {T (kx, ky)F [t(x, y)u±l0(x, y)]}

t(x, y) : obstacle transmission function

Fresnel (angular-spectrum) propagator

T (kx, ky) = exp[ikz − (k2
x + k2

y)z/2k ]

Crosstalk:

|ψ±l0〉 =
∑
l

Cl,±l0 |l〉

Cl,±l0 =
∫
dru∗l (r)ψ±l0(r)

General approach:
Quantify the coefficients Cl,±l0

(work in the OAM basis)
Our approach:

Work with the non-orthogonal
modes ψ±l0(r)

8 / 15



Entanglement of diffracted biphotons

Source

Detector

Detector
Obstruction

Obstruction

d
2a

L

Diffracted state:

|Ψ〉 =
∫
dr1

∫
dr2Ψ(r1, r2) |r1, r2〉

Ψ(r1, r2) = 1√
2(1 + b2)

[
ψdl0(r1)ψ−d−l0(r2) + ψd−l0(r1)ψ−dl0 (r2)

]
,

Mutual overlap:

b =
∫
ψd ∗−l0(r)ψdl0(r)dr

Entanglement only depends on b!

Concurrence:

C(|Ψ〉) =
√

2
(
1− Tr[%2

1]
)

= 1− b2

1 + b2
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Role of radial structure on entanglement loss
Single-ring (LG) modes vs multi-ring (BG) modes

Displaced (smooth) circular obstacles:
t(x− d, y) = 1− exp

{
−
[

(x−d)2+y2

a2

]m}
d = displacement, a = obstacle radius.

Multi-ring case: transmitted intensity ∼ on l0
Single-ring case: l0−dependent waist → obstacle on intensity max.
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Role of radial structure on entanglement loss

C(|Ψ〉) = 1−b2

1+b2

b→ 0 for d/a→ 0 (no OAM change)
l0−dependent b modulations:

phase plays a role!

Entanglement of multi-ring
modes is more robust!!
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Entanglement loss and angular uncertainty
Angular position and momentum uncertainty relation:

Barnett & Pegg, Phys. Rev. A (1990)

∆φ∆Lz ≥ ~
2 |1− 2πP (π)|

φ = [−π, π], Lz/~ = l ∈ Z, P (φ) = |ψ(φ)|2 angular probability density

Intelligent states:
g(φ) = (λ/π)1/4√

erf(π√λ)
eil̄φe−λφ

2/2

g(l) = 1√
2π

∫ π
−π e

−ilφg(φ)dφ
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Entanglement loss and angular uncertainty
Maximally entangled states diffracted on angular apertures:

Mutual overlap:

b =
e−l

2
0/λ<

{
erf
(
πλ+il0√

λ

)}
erf(π

√
λ) ,

b ∼ 1 at ∆φ ∼ 0
(narrow aperture, broad OAM)

b ∼ 0 at ∆φ ∼ π/
√

3
(open aperture, defined OAM)

b decays faster for larger l0:
1. ∆l independent on l0

2. Finer phase structure

∆φ is effectively smaller!!
13 / 15



Entanglement loss and angular uncertainty

What if we rescale ∆φ with l0?

Universal entanglement behaviour!

0 ≤ ∆φ . 1→ Gaussian approximation: b ≈ e−2(l0∆φ)2

Concurrence: C = 1−b2

1+b2 ≈ tanh
(
2l20∆φ2)
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Conclusion and outlook

! Simple analytical formula for diffracted maximally-entangled
qubits

! Multi-ring modes are more robust against diffraction
G Sorelli, VN Shatokhin, FS Roux, A Buchleitner, Phys. Rev. A 97 (1), 013849 (2018)

! Universal entanglement loss induced by angular uncertainty
G Sorelli, VN Shatokhin, A Buchleitner, Journal of Optics 22 (2), 024002 (2020)

? Generalization to more general/high-dimensional states
? Diffraction as preparation and not disturbance

G Puentes, OSA Continuum 3, 1616-1632 (2020)
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Thanks to my coworkers:

Thank you for your attention!
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