Electromagnetics & Photonics in the Age of Digital Manufacturing

Presented by:

OSA Photonic Metamaterials Technical Group

The OSA Photonic Metamaterials Technical Group Welcomes You!

ELECTROMAGNETICS & PHOTONICS IN THE AGE OF DIGITAL MANUFACTURING

25 March 2019 • 10:00 EDT

Technical Group Leadership 2019

Wei-Ting Chen Chair Harvard University

Shaimaa Azzam Social Media Officer Purdue University

Aaron Pung Webinar Officer Sandia National Laboratories

Technical Group at a Glance

• Focus

- Fundamental and applied aspects of waves in random and periodically nanostructured materials
- Nonconventional materials: Left-handed, negative index, photonic/plasmonic bandgap, metamaterials and metasurfaces etc.

Mission

- Total members: 1,516 members
- To benefit *YOU* and to strengthen *OUR* community
- Webinars, publications, technical/industrial events and outreach in OSA conferences
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGactivities@osa.org</u>.

• Find us here

Website: www.osa.org/OP

Today's Webinar

Photonic

Electromagnetics & Photonics in the Age of Digital Manufacturing

Dr. Raymond Rumpf

Director, EM Lab El Paso, USA rcrumpf@utep.edu

Speaker's Short Bio:

Ph.D. in Optics from the University of Central Florida in 2006. Currently the Schellenger Professor of Electrical Research in the department of Electrical & Computer Engineering and Computational Science at University of Texas at El Paso.

Pioneering 21st Century Electromagnetics & Photonics

New Concepts for Metamaterials & Photonic Crystals in the Age of Digital Manufacturing

Dr. Raymond C. Rumpf

Director, EM Lab

Schellenger Professor of Electrical Research Department of Electrical & Computer Engineering + Computational Science University of Texas at El Paso, El Paso, Texas 79968 rcrumpf@utep.edu ◆ (202) 64-EMLAB ◆ http://emlab.utep.edu

Outline

- Spatially-Variant Lattices
- 3D Electrical Circuits
- Spatially Variant Anisotropic Metamaterials (SVAMs)
- Spatially Variant Photonic Crystals (SVPCs)

Spatially-Variant Lattices

Periodic Structures in Electromagnetics

Metamaterials

Duke University

Metasurfaces

Photonic Crystals

Frequency Selective Surfaces

Array Antennas

Diffraction Gratings

Unintentional

What is a Spatially Variant Lattice?

What is a Spatially Variant Lattice?

What is a Spatially Variant Lattice?

What Can Be Spatially Varied?

What Can Be Spatially Varied?

What Can Be Spatially Varied?

Controlling Deformations

Controlling Deformations

Critical Region

Lattices on Curved Surfaces

Optical Vortex Lenses

Beresna, Martynas, et al. "Geometric phase via stress induced birefringence." (2017).

Lattices Designed by Transformation Optics

- Accommodates any shape
- Smoother form factor
- Greater density of elements
- Prevents element overlap & dilution
- Minimizes deformations to the unit cells

3D Electrical Circuits

What is a 3D Circuit?

What is a 3D Circuit?

- Lower volume
- Lighter weight
- Shorter trace lengths
- Improved power efficiency
- Greater bandwidth
- Unconventional form factors
- New physical mechanisms

3D Circuit

Vision for 3D Printed Circuits and Electromagnetic Systems

Process Flow for 3D Circuits: Step 1 – Schematic Capture

Schematic and PCB Design Software

https://diptrace.com/

Process Flow for 3D Circuits: Step 3 – Slicing for Hybrid 3D Printing

Process Flow for 3D Circuits: *Step 4 – Hybrid 3D Printing*

- Ultra-fine resolution for high frequencies
- Micro-dispensing for conductors (~25 $\mu m)$
- Micro-FDM for dielectrics (~50 μ m)
- Pulsed laser for trimming, cutting, and drilling
- CW laser for curing and sintering

3D Printed Circuits

Chip Scale 3D Printing

First-Ever Automated CAD-to-Print for Direct-Write Hybrid 3D Printing

"One small step for electronics, one giant leap for digital manufacturing."

Manufactured Device

The Holey Frijoles

Spatially-Variant Anisotropic Metamaterials

Field Sculpting

DARPA Young Faculty Award Grant No. N66001-11-4150

Field Sculpting

Field Sculpting

DARPA Young Faculty Award Grant No. N66001-11-4150

All-Dielectric Anisotropic Metamaterials

- Strong anisotropy
- All-dielectric
- Nonresonant
- Very low loss
- Ultra broadband
- Can be spatially varied

DARPA Young Faculty Award Grant No. N66001-11-4150 C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75-82, 2012.

Microstrip Decoupled From Metal Object in Close Proximity

R. C. Rumpf, C. R. Garcia, H. H. Tsang, J. E. Padilla, M. D. Irwin, "Electromagnetic Isolation of a Microstrip by Embedding in a Spatially Variant Anisotropic Metamaterial," PIER, Vol. 142, pp. 243-260, 2013.

Artist Concept of Antenna Decoupling by SVAM

Simulated Decoupling of Two Dipole Antennas

No SVAM

Separation:	$0.135\lambda_0$
Frequency:	810 MHz
Wavelength:	λ_0 = 37 cm
ECC:	0.14
S ₂₁ :	-5.5 dB

With SVAM

Separation:	$0.096\lambda_0$
Frequency:	575 MHz
Wavelength:	λ_0 = 37 cm
ECC:	0.016
S ₂₁ :	-42 dB

Spatially-Variant Photonic Crystals

Self-Collimation

Spatially-Variant Self-Collimation

Spatially-Variant Self-Collimation

Spatially-Variant Self-Collimation

First Demonstration of Spatially-Variant Self-Collimation

DARPA Young Faculty Award Grant No. N66001-11-4150 R. C. Rumpf, J. Pazos, C. R. Garcia, L. Ochoa, and R. Wicker, "3D Printed Lattices with Spatially Variant Self-Collimation," PIER, Vol. 139, pp. 1-14, 2013.

Tightest Bend of an Unguided Optical Beam

- Bend radius was $6.7\lambda_0$. World Record!
- Low refractive index $(n \cong 1.59)$.
- Operated at $\lambda_0 = 1.55$ mm.

J. L. Digaum et al "Tight Control of Light Beams in Photonic Crystals with Spatially-Variant Lattice Orientation," Optics Express, Vol. 22, Issue 21, pp. 25788-25804, 2014.

SVPC Vs. Graded-Index

High-Speed Optical Interconnects

Preliminary Photon Funnel

Beams Through an SVPC

Multiplexed Lattices

http://emlab.utep.edu

