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Outline

1. Overview of Quantum Technologies 

• Connectivity, Control, Coherence
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2. Increasing connectivity - Solid State Defects

3. Increasing control - Trapped Ions
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Engineered Quantum Systems

Need to increase Connectivity and Control


Without reducing Coherence
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Modular Architecture
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Modular Architecture

...

...

...

Need to increase Connectivity and Control


Without reducing Coherence

Each Module has high fidelity:


Detection 

Construction 

Control
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Modular Architecture

Need to increase Connectivity and Control


Without reducing Coherence

...

...

...

Increase # of Modules without

increasing errors
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Quantum Technologies

Superconducting
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… and more …

Ions Solid State

Haeffner (Berkeley) 
Blatt (Innsbruck) 

Chuang (MIT) 
Monroe/Kim/Brown (Duke) 

Lincoln Labs 
… and more …

Englund (MIT) 
Lukin (Harvard) 
Hanson (Delft) 

Awschalom (U Chicago) 
Vuckovic (Stanford) 

… and more …
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Outline

1. Overview of Quantum Technologies
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2. Increasing connectivity — Solid State Defects 

• Photonic devices for improving entanglement rate

3. Increasing control - Trapped Ions



The Nitrogen Vacancy Center in Diamond
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Naturally trapped atom.



The Nitrogen Vacancy Center in Diamond
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3 GHz

Electron spin  
coherence time > 1ms.

Nuclear spin  
coherence time > 1s 
( N and nearby C13 ).

|0⟩

|1⟩

3A2

3E1



The Nitrogen Vacancy Center in Diamond

18

3 GHz

Electron spin  
coherence time > 1ms.

Nuclear spin  
coherence time > 1s 
( N and nearby C13 ).

|0⟩

|1⟩

3A2

3E1

Optical pumping into the ms = 0 
> 99.9% initialization fidelity. 



The Nitrogen Vacancy Center in Diamond
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Electron spin  
coherence time > 1ms.

Nuclear spin  
coherence time > 1s 
( N and nearby C13 ).

|0⟩

|1⟩

3A2

3E1

Optical pumping into the ms = 0 
> 99.9% initialization fidelity. 

Spin can be entangled 
with the photon state.



Modular Architecture
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...

...

Construction 
Ensemble of C + N spins.



Modular Architecture
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...

...

Construction 
Ensemble of C + N spins.


Control 
Via MW control.
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Detection

Through coupling to 


and readout of the NV center. 

Construction 
Ensemble of C + N spins.
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Via MW control.



Modular Architecture
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...

...

Detection

Through coupling to 


and readout of the NV center. 

Construction 
Ensemble of C + N spins.


Control 
Via MW control.

Connection

Photonic links mediated by 


NV optical transitions



Entangling 2 NVs
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Entangling 2 NVs
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|0⟩

|1⟩
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D

|01iAB + |10iAB

1 photon!



Optical Properties of NV Centers
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Optical Properties of NV Centers
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Zero Phonon

 Line

Phonon

 Side Band

10K

Emission Spectrum

ZPL

PSB

620 640 660 680 700 720 740 760 780
Wavelength

Need to improve for high fidelity, high rate connections between nodes

Only 3% of emission coherent with spin state


Dipole emission is difficult to collect


Spectral diffusion limits indistinguishability



Cavity Enhancement
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Increased Rate of Entanglement

(1) Increased emission at transition coherent with spin state (Q / V)


(2) Engineered collection into a single (useful) mode



Cavity Enhancement
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Q > 106, V ~ (λ/n)3 from FDTD simulations.



Cavity Enhancement
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Q > 106, V ~ (λ/n)3 from FDTD simulations. 

Holes can be removed from one side to  
increase collection into the waveguide mode.



Nanofabrication in Diamond
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Isotropic O2 Etch 
(No Bias, High Power)

1umAll diamond

1um

Mouradian, Wan et al APL 021103, 2017

Wan, Mouradian et al APL 141102, 2018



Diamond Cavities
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532 nm excitation of NVs. 

Collection of NV-fed cavity emission.
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Consistent fabrication 
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Mouradian, Wan et al APL 021103, 2017

Wan, Mouradian et al APL 141102, 2018



On-Chip Integration
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Bayn, Mouradian et al APL 211101, 2014


Mouradian et al PRX 031009, 2015

Compact 

Phase stable 

Low loss

SiN     LiNbO3    AlN
Ease of Fabrication 
Low Fluorescence 

Low Loss 
Active
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On-Chip Integration
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Bayn, Mouradian et al APL 211101, 2014


Mouradian et al PRX 031009, 2015

Hybrid Architecture:  

Components fabricated separately. 

Only best are integrated 

Compact 

Phase stable 

Low loss



On-Chip Integration
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Hybrid Architecture:  

Components fabricated separately. 

Only best are integrated 

400x400nm
SiN WG

200x200nm
diamond WG

12u

tungsten 
probe

diamond 
WG



On-Chip Integration

37Mouradian et al PRX 031009, 2015

Hybrid Architecture:  

Components fabricated separately. 

Only best are integrated 



On-Chip Integration - Advancements
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Large-scale integration with Aluminum Nitride

Wan, Lu et al Nature 582, 2020



On-Chip Integration - Advancements
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Mouradian, Englund APL Photonics 2, 2016
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NV Centers - Review
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Nanophotonics and Integrated Systems  
can improve connectivity.

Surface and lattice defects 
cause spectral wandering

Van Dam, Walsh et al PRB 161203, 2019
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No Entanglement!



NV Centers - Review
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Nanophotonics and Integrated Systems  
can improve connectivity.

Surface and lattice defects 
cause spectral wandering

Van Dam, Walsh et al PRB 161203, 2019

If only we had a better qubit…..
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Outline

1. Overview of Quantum Technologies
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2. Increasing connectivity — Solid State Defects

3. Increasing control - Trapped Ions 

• Integrated photonics for scalable control 



Trapped Ions - Background
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High vacuum - 10-11 mbar 

DC & RF fields 

2 ionization lasers 
2 cooling lasers 
1 repump laser 

1 qubit laser



Trapped Ions - Background
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397 nm 729 nm

854 nm

866 nm

S1/2

P1/2

P3/2

D3/2

D5/2

Optical 
Qubit

|0⟩

|1⟩

Optical qubit: 
T2 ~200ms

2 qubit gate: 
10-100 us, 99.6% fidelity

SPAM errors: 
2x10-4

1 qubit gate: 
~1 us, 99.995% fidelity



Trapped Ions - Background
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Internal
External

|0⟩

|1⟩
can be cooled to ground state 

occupation can be engineered

Motional Modes

Entanglement is natural between  
ions in the same trap

Any-to-any connectivity is possible 
(with correct control fields)



Modular Architecture
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Construction 
Linear chains co-trapped.

Connection

Photonic links or 


physical links via shuttling

...

...

...



Modular Architecture
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Construction 
Linear chains co-trapped.


Control 
Optical control on each ion.

Connection

Photonic links or 


physical links via shuttling

...

...

...



Modular Architecture
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Detection

Scattering off a cycling,


State-dependent transition 

Construction 
Linear chains co-trapped.


Control 
Optical control on each ion.

Connection

Photonic links or 


physical links via shuttling

...

...

...



Trapped Ions -Scalability
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(1) Ultra High Vacuum

Commercial, packaged,  
cryogenic systems by  

Cold Quanta

(2) Trapping Electrodes

Microfabricated surface traps 
using standard techniques 



Rotational Interlude
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Silicon micro fabrication allows for 
control of the rotational modes of a  

symmetric ion crystal 

Urban, Glikin, Mouradian, Krimmel, 

Hemmerling, Haeffner, PRL 133202, 2019Li, Urban, et al PRL 053001, 2017



Rotational Interlude
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First demonstration of  
quantum control of  

rotational degrees of freedom.

Urban, Glikin, Mouradian, Krimmel, 

Hemmerling, Haeffner, PRL 133202, 2019

Can be used for: 

Fundamental tests  
of indistinguishability. 

Detection of OAM modes. 

Information storage in  
noise-insensitive rotational states  



Trapped Ions -Scalability

52

(1) Ultra High Vacuum

Commercial, packaged,  
cryogenic systems by  

Cold Quanta

(2) Trapping Electrodes

Microfabricated surface traps 
using standard techniques 

(3) Optical 
Control

??



53 Mouradian, et al, ArXiV 2020

Enhanced Sensing

|0⟩

|1⟩

E = ℏω0 + Δ

Δ ∝ B(g, t)

ti

How do you build a good sensor? 

Trade-off between: 
  

(1) number of sensors and 
(2) control fidelity



54 Mouradian, et al, ArXiV 2020

Enhanced Sensing

|0⟩

|1⟩

E = ℏω0 + Δ

Δ ∝ B(g, t)

ti

Can get away with

sacrificing fidelity for 

number of sensors  

M ∼
1

F2
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Enhanced Sensing - Intermittent Signal

|0⟩

|1⟩

E = ℏω0 + Δ

Δ ∝ B(g, t)

ti
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Enhanced Sensing - Intermittent Signal

|0⟩

|1⟩

E = ℏω0 + Δ

Δ ∝ B(g, t)
ti ti ti
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Enhanced Sensing

Maintaining fidelity while increasing the # of sensors

is especially important for intermittent signals.
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Enhanced Sensing

Maintaining fidelity while increasing the # of sensors

is especially important for intermittent signals.



Trapped Ions -Scalability
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(1) Ultra High Vacuum

Commercial, packaged,  
cryogenic systems by  

Cold Quanta

(2) Trapping Electrodes

Microfabricated surface traps 
using standard techniques 

(3) Optical 
Control

??



Current Control Systems - Bulk Optics
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Easy to Implement 
Well Understood 

Bulky 
Heavy 

Unstable
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Next Gen. Control Systems - Integrated Optics

Large Engineering 
Challenge 

Compact 
Stable 

Scalable



Trapped Ions -Scalability
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Components 

Low-loss Input


Splitting to M channels


Active Amplitude, Phase, and

Frequency Control


Waveguide Crossings


Multi-Wavelength Merging

 


Output Imaging
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Integrated Large-Scale Trapped Ion Sensor
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854

729

866

All sensors controlled 

in parallel, so don’t need 

on-chip active control.



Integrated Large-Scale Trapped Ion Sensor
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854

729

866

e.g. waveguide crossings


96.8% efficiency

0.3% cross-talk

All components must be optimized:


e.g. Waveguide Crossings



Trapped Ions - Review
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A great qubit allowing for  
state-of-the-art coherent control 

Next Steps:

Passive integrated photonics for a  
large-scale sensor 

Integrated Amplitude + Phase control 

Integrated Frequency control 

Improved detection 

...

...

...
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MIT Quantum Photonics Group

1um

diamond

Remove  
top AlD

Anisotropic 
EtchSiN hard mask ALD  

20nm Al2O3

Fabrication in Diamond

67 Mouradian et al. APL vol 111 (2017)
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