WE ARE 心N

Engineering Solutions to Scale Quantum Information Processing

Sara Mouradian, University of California, Berkeley

OSA Technical Groups

Create lasting, valuable connections.

Engaging communities Innovative events Focused networking Enriching webinars

osa.org/technicalgroups

Technical Group Leadership 2020

Chair: <u>Dr. Graciana Puentes</u> University of Buenos Aires, AR

Vice-Chair: Dr. Lee Bassett University of Pennsylvania, US

Webinars Officer: Dr. Pablo Bianucci Concordia University, CA

Events Officer: <u>Dr. Sara Mouradian</u> UC Berkeley, US

Liason with Industry: Dr. <u>Mo Soltani</u> Raytheon BBN Technologies, US

Our Technical Group at a Glance

- Experiment, theory, and technologies relevant for quantum measurements and quantum information within the purview of quantum optical science
- Nearly 3000 members worldwide
- Webpage https://www.osa.org/oq
- Webinars, technical events, networking events, campfire sessions etc.
- Suggestions, ideas for events, email us at OSA <u>TGActivities/gpuentes@df.uba.ar</u>
- Interested in becoming our Social Media Officer? Please reach out!

f 🔽 🞯 🕨

Welcome to the Quantum Optical Science and Technology Technical Group Webinar!

Engineering Scalable Quantum Systems

Sara Mouradian Ion Trap Group, UC Berkeley IC Postdoctoral Fellow OSA Quantum Optical Science and Technology Technical Group Oct 15, 2020

Outline

1. Overview of Quantum Technologies

Connectivity, Control, Coherence

2. Increasing connectivity - Solid State Defects

3. Increasing control - Trapped lons

Timeline of Quantum Technologies

Need to increase Connectivity and Control

Need to increase **Connectivity** and **Control**

Need to increase **Connectivity** and **Control**

Need to increase **Connectivity** and **Control**

Need to increase **Connectivity** and **Control**

Need to increase **Connectivity** and **Control**

Without reducing Coherence

Each Module has high fidelity:

Need to increase **Connectivity** and **Control**

Without reducing Coherence

Each Module has high fidelity:

Need to increase **Connectivity** and **Control**

Without reducing Coherence

Each Module has high fidelity:

Need to increase Connectivity and Control

Without reducing Coherence

Increase # of Modules without increasing errors

Quantum Technologies

Quantum Technologies

Outline

1. Overview of Quantum Technologies

2. Increasing connectivity — Solid State Defects

• Photonic devices for improving entanglement rate

3. Increasing control - Trapped lons

Naturally trapped atom.

Electron spin coherence time > 1ms.

Nuclear spin coherence time > 1s (N and nearby C¹³).

Electron spin coherence time > 1ms.

Nuclear spin coherence time > 1s (N and nearby C^{13}).

Optical pumping into the $m_s = 0$ > 99.9% initialization fidelity.

Electron spin coherence time > 1ms.

Nuclear spin coherence time > 1s (N and nearby C¹³).

Optical pumping into the $m_s = 0$ > 99.9% initialization fidelity.

Spin can be entangled with the photon state.

Construction Ensemble of C + N spins.

$\begin{array}{c} \textbf{Construction} \\ \text{Ensemble of C + N spins.} \end{array}$

Control Via MW control.

Detection

Through coupling to and readout of the NV center.

Construction Ensemble of C + N spins.

Control Via MW control.

Detection

Through coupling to and readout of the NV center.

Construction Ensemble of C + N spins.

Control Via MW control.

Connection Photonic links mediated by NV optical transitions

Entangling 2 NVs

Entangling 2 NVs

Entangling 2 NVs

Optical Properties of NV Centers

Optical Properties of NV Centers

Only 3% of emission coherent with spin state Dipole emission is difficult to collect

Spectral diffusion limits indistinguishability

Need to improve for high fidelity, high rate connections between nodes

Cavity Enhancement

(1) Increased emission at transition coherent with spin state (Q / V)

(2) Engineered collection into a single (useful) mode

Increased Rate of Entanglement

Cavity Enhancement

Q > 10⁶, V ~ $(\lambda/n)^3$ from FDTD simulations.

Cavity Enhancement

Q > 10⁶, V ~ $(\lambda/n)^3$ from FDTD simulations.

Holes can be removed from one side to increase collection into the waveguide mode.
Nanofabrication in Diamond

Diamond Cavities

532 nm excitation of NVs.

Collection of NV-fed cavity emission.

Q > 14,000

Consistent fabrication across the chip

Active

Hybrid Architecture:

Components fabricated separately. Only best are integrated Compact Phase stable Low loss

Bayn, Mouradian et al APL 211101, 2014 Mouradian et al PRX 031009, 2015

Hybrid Architecture:

Components fabricated separately. Only best are integrated

Mouradian et al PRX 031009, 2015

Hybrid Architecture:

Components fabricated separately. Only best are integrated

On-Chip Integration - Advancements

Large-scale integration with Aluminum Nitride

On-Chip Integration - Advancements

Hybrid structure limits diamond patterning

Unloaded Q > 10^{6} Loaded Q =55,000, 75% coupled into AIN

MEMS tuning

Mouradian, Englund APL Photonics 2, 2016

NV Centers - Review

Nanophotonics and Integrated Systems can improve connectivity.

Van Dam, Walsh et al PRB 161203, 2019

Surface and lattice defects cause spectral wandering

NV Centers - Review

Van Dam, Walsh et al PRB 161203, 2019

Surface and lattice defects cause spectral wandering

Outline

1. Overview of Quantum Technologies

2. Increasing connectivity — Solid State Defects

3. Increasing control - Trapped lons

Integrated photonics for scalable control

Trapped Ions - Background

Trapped Ions - Background

Optical qubit: T₂~200ms

1 qubit gate: ~1 us, 99.995% fidelity

2 qubit gate: 10-100 us, 99.6% fidelity

> SPAM errors: 2x10⁻⁴

Trapped Ions - Background

can be cooled to ground state

occupation can be engineered

Entanglement is natural between ions in the same trap

Any-to-any connectivity is possible (with correct control fields)

Modular Architecture

Construction

Linear chains co-trapped.

Connection Photonic links or physical links via shuttling

Modular Architecture

Construction Linear chains co-trapped.

Control Optical control on each ion.

Connection Photonic links or physical links via shuttling

Modular Architecture

Detection

Scattering off a cycling, State-dependent transition

Construction

Linear chains co-trapped.

Control Optical control on each ion.

Connection Photonic links or physical links via shuttling

Trapped Ions -Scalability

(1) Ultra High Vacuum

Commercial, packaged, cryogenic systems by Cold Quanta

(2) Trapping Electrodes

Microfabricated surface traps using standard techniques

Rotational Interlude

Silicon micro fabrication allows for control of the rotational modes of a symmetric ion crystal

Rotational Interlude

First demonstration of quantum control of rotational degrees of freedom.

Can be used for:

Fundamental tests of indistinguishability.

Detection of OAM modes.

Information storage in noise-insensitive rotational states

Trapped Ions -Scalability

Commercial, packaged, cryogenic systems by Cold Quanta

Microfabricated surface traps using standard techniques

Enhanced Sensing

How do you build a good sensor?

Trade-off between:

(1) number of sensors and(2) control fidelity

Enhanced Sensing

Can get away with sacrificing fidelity for number of sensors

Enhanced Sensing - Intermittent Signal

Enhanced Sensing - Intermittent Signal

Mouradian, et al, ArXiV 2020

Enhanced Sensing

Maintaining fidelity while increasing the # of sensors is especially important for intermittent signals.

Enhanced Sensing

Maintaining fidelity while increasing the # of sensors is especially important for intermittent signals.

Trapped Ions -Scalability

Commercial, packaged, cryogenic systems by Cold Quanta

Microfabricated surface traps using standard techniques

Current Control Systems - Bulk Optics

Easy to Implement Well Understood

Bulky Heavy Unstable

Next Gen. Control Systems - Integrated Optics

Large Engineering Challenge

Compact Stable Scalable

Trapped Ions -Scalability

Components

Low-loss Input

Splitting to *M* channels

Active Amplitude, Phase, and Frequency Control

Waveguide Crossings

Multi-Wavelength Merging

Output Imaging

Integrated Large-Scale Trapped Ion Sensor

All sensors controlled in parallel, so don't need on-chip active control.

Integrated Large-Scale Trapped Ion Sensor

All components must be optimized:

e.g. Waveguide Crossings

e.g. waveguide crossings

96.8% efficiency 0.3% cross-talk

Trapped Ions - Review

A great qubit allowing for state-of-the-art coherent control

Next Steps:

Passive integrated photonics for a large-scale sensor

Integrated Amplitude + Phase control

Integrated Frequency control

Improved detection

Thank you!

Cal

Ion Collaborators

Prof. Hartmut Haeffner Prof. Alex Retzker Neil Glikin Dr. Eli Megidish Kai-Isaak Ellers

NV Collaborators

Prof. Dirk Englund Prof. Tim Schroeder Dr. Noel Wan Dr. Michael Walsh Eric Bersin

Funding IC Postdoctoral Fellowship

This research was supported by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at UC Berkeley, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Office of the Director of National Intelligence.

Fabrication in Diamond

