Extreme Platforms for Extreme Photonics

Nader Engheta With special thanks to Brian Edwards Inigo Liberal Nasim Mohammadi Estakhri Ahmed Mahmoud Yue Li Yaakov Lumer

June 6, 2017

Photonic Doping

Peculiar Effective Medium Properties

Liberal, Mahmoud, Li, Edwards, Engheta, Science, 2017

Thermal Engineering with Zero-Index Media

Photonic Doping

Engineering Thermal Emission

Liberal & Engheta, <u>CLEO Conference</u>, May 15, 2017

Extreme Resonant Cavities

Geometry-Independent Cavities

Bound State in the Continuum

Liberal and Engheta, Nature Photonics, March 2017

Liberal, Mahmoud, Li, Edwards, Engheta, Science, 2017

Mahmoud, Liberal and Engheta, Nature Communications, 2016

Quantum Optics of ZIM

Extreme Quantum Optics

Engineering Rabii Frequencies without detuning

Liberal and Engheta, PNAS, 2017

Liberal and Engheta, <u>PNAS</u>, 2017

Optical Metatronics

Optical Metatronics

Quantum Metatronics

N. Engheta, et al. <u>PRL</u>, 2005 N. Engheta, <u>Science</u>, 2007 Lumer, Liberal and Engheta, <u>CLEO Conference</u>, May 16, 2017

Extreme Platforms for Mathematical Operations

Informatic Metastructures

Silva, Monticone, Castaldi, Galdi, Alu, Engheta, Science, 2014

Metastructures to Solve Equations with Waves

N. Mohammadi Estakhri, B. Edwards, N. Engheta <u>CLEO Conference</u>, May 18, 2017

B. Edwards, N. Mohammadi Estakhri, N. Engheta <u>MRS Spring Meeting</u>, April 11, 2017

Extreme Metasurfaces

Cascaded Metasurfaces

Transparent Metasurfaces with Prescribed Aperture Fields

Mohammadi Estakhri, Kastner, Engheta, <u>IEEE AP-S Symposium,</u> San Diego, July 2017

Photonic Doping

Liberal, Mahmoud, Li, Edwards, Engheta, Science, 355, 1058-1062, March 10, 2017

Pure Intrinsic Semiconductor

Doped Semiconductor

How about "photonic doping"?

"Pure" Photonic Material

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, Science, 355, March 10, 2017

Conventional Effective Medium Theory (EMT) 2D structure Small inter-particle separations $d \ll \lambda_0$ Small particles $a \ll \lambda_0$ E_{eff} $\mu_{_{eff}}$ Large number of *particles* N >> 1 Difficulties on boundaries with a Difficulties on the interaction small curvature radius with near fields

What if the host is an ENZ medium?

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, <u>Science</u>, 355, March 10, 2017

Background on Epsilon-Near-Zero (ENZ)

PRL 97, 157403 (2006)

PHYSICAL REVIEW LETTERS

week ending 13 OCTOBER 2006

Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε -Near-Zero Materials

Mário Silveirinha* and Nader Engheta[†]

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 23 March 2006; published 10 October 2006)

Background: ENZ Structures

From: *A. Boltasseva* (*Purdue*) *Kim, et al., Optica* (2016)

From: J. Caldwell(NRL) *Kim, et al., Optica* (2016)

From: N. Zheludev(Southmapton) Ouet al., Nat. Commun. (2014)

From:CT Chan's Huang, et al., Nat. Mater. (2011)

SEM from: Vesseur, et al., PRL (2013)

Wire SEM from:Zayat & Podolskiy Pollard, et al., PRL (2009) StackSEM from: Mass, et al., Nat. Photon. (2013)

2-D Scenario with TM polarization

$$\mathbf{H} = H(x, y) \ \hat{\mathbf{u}}_z$$

$$\mathbf{E} = \frac{1}{-i\omega\varepsilon} \nabla H(x, y) \times \hat{\mathbf{u}}$$

R. W. Ziolkowski, PRE, (2004)

N. Engheta, <u>Science</u>, 340, 286 (2013) M. Silveirinha & N. Engheta, <u>PRL</u>, (2006)

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, <u>Science</u>, 355, March 10, 2017

Photonic "Doping" 2D Generic Structures

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, <u>Science</u>, 355, March 10, 2017

Example 1: EMNZ $\mu_{eff} = 0$

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, Science, 355, March 10, 2017

Rod Position Independence

Example 2: PMC $\mu_{eff} = \infty$

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, Science, 355, March 10, 2017

Example 3: Single ENZ 2D slab

PMC point ($\omega = 0.985 \omega_p$) *EMNZ* Point ($\omega = \omega_p$)

"Extreme" Cavity Resonators

I. Liberal and N. Engheta, <u>Science Advances</u>, 2016 I. Liberal and N. Engheta, <u>Optics and Photonics News (OPN)</u>, 2016 I. Liberal and N. Engheta, <u>Nature Photonics</u>, March 2017 Mahmoud, Liberal and Engheta, <u>Nature Communications</u>, 2016

Flexible "Open" Cavity: Photonic BIC

I. Liberal and N. Engheta, Optics and Photonics News (OPN), 2016

Experimental Verification of EMNZ Cavity

Experimental Verification of EMNZ Cavity

Several rods embedded in ENZ metasurface

Filling ENZ Metasurface with several rods

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, <u>Science</u>, 355, March 10, 2017

ENZ-based Metasurface with PEC rods Filling ENZ Metasurface with conducting parts -H_z $+H_{z}$ ENZ $\varepsilon_{\rm eff} \simeq 0$ $\mu_{eff} \approx 1 - \frac{A_{PEC}}{A}$ PEC PEC $\mu_{eff} \rightarrow 0$ PEC

I. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, Science, 355, March 10, 2017

ENZ Metasurface filled with Conductors

Filling ENZ Metasurface with conducting parts

I

$$\mu_{\rm eff} = 1 - \frac{A_{PEC}}{A}$$
$$\mu_{\rm eff} = 3 \lambda_0$$
$$\varepsilon_{\rm eff} \simeq 0$$

Poynting vector

Extreme platforms can play interesting roles in light-matter interaction

Extreme photonics offers unique functionality

March 2017

July/Aug 2016

Thank you very much

