

From Nanolasers to Photonic Integrated Circuits

Qing Gu

Nanophotonics Lab

Electrical & Computer Engineering, UT Dallas

Why integration?

	Electronic IC	Photonic IC
Signal	Electrical	Optical

Promise of Photonic IC:

- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

	Electronic IC	Photonic IC
Signal	Electrical	Optical
Components	Transistors, capacitors, resistors	Waveguides, lasers, detectors, modulators, filters

Promise of Photonic IC:

- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

	Electronic IC	Photonic IC
Signal	Electrical	Optical
Components	Transistors, capacitors, resistors	Waveguides, lasers, detectors, modulators, filters
Material	Silicon	Silicon, compound semiconductor

Promise of Photonic IC:

- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

Waveguides

Agha et al. Optics letters 37.14 (2012)

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Photonic IC

©Photonic Integration Group, Eindhoven University of Technology

Modulators

Ikeda et al. APL 92.20 (2008)

Sorger et al. Nanophotonics 1.1 (2012)

Detectors

Redding et al. Nature Photonics 7.9 (2013)

Waveguides

Agha et al. Optics letters 37.14 (2012)

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Photonic IC

©Photonic Integration Group, Eindhoven University of Technology

Couplers

Ikeda et al. APL 92.20 (2008)

Detectors

Redding et al. Nature Photonics 7.9 (2013)

Sorger et al. Nanophotonics 1.1 (2012)

Waveguides

Agha et al. Optics letters 37.14 (2012)

Silicon Photonics

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Photonic IC

©Photonic Integration Group, Eindhoven University of Technology

Couplers

Ikeda et al. APL 92.20 (2008)

Sorger et al. Nanophotonics 1.1 (2012)

Detectors

Redding et al. Nature Photonics 7.9 (2013)

III-V material platform

Waveguides

Agha et al. Optics letters 37.14 (2012)

Silicon Photonics

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Photonic IC

©Photonic Integration Group, Eindhoven University of Technology

Couplers

Ikeda et al. APL 92.20 (2008)

Detectors

Redding et al. Nature Photonics 7.9 (2013)

Modulators

• Material gain requirement: threshold gain

 $g_{th} \propto \frac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

• Material gain requirement: threshold gain

 $g_{th} \propto rac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

• Material gain requirement: threshold gain

 $g_{th} \propto rac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

• Material gain requirement: threshold gain

 $g_{th} \propto rac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

Texas Photonics Cente

• Material gain requirement: threshold gain

 $g_{th} \propto \frac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

Texas Photonics Cente

• Material gain requirement: threshold gain

 $g_{th} \propto \frac{1}{\Gamma \cdot Q}$ Γ : mode confinement; **Q**: quality factor

 $g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}}$ (below threshold)

• Size requirement: diffraction limit $L_{\min} \sim \lambda / 2n$

Texas Photonics Cente

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold
- Dielectric disk lasers

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold
- Dielectric disk lasers

• Photonic crystal lasers

Painter et al. Science 284, 1819 (1999)

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold
- Dielectric disk lasers

• Photonic crystal lasers

• Nano-membrane lasers

Painter et al. Science 284, 1819 (1999)

Yang *et al.* Nat. Photon. 6, 615 (2012)

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold
- Dielectric disk lasers

• Photonic crystal lasers

- Nano-membrane lasers
- Nano-wire/rod lasers

Painter et al. Science 284, 1819 (1999)

Yang *et al.* Nat. Photon. 6, 615 (2012)

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Metallic-cavity nanolaser

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Metallic-cavity nanolaser

<mark>@ 77K</mark> Q = 140 g_{th} ≈ 7x10⁵ cm⁻¹

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- x room temperature operation
- electrically pumped
- x low lasing threshold

Metallic-cavity nanolaser

<mark>@ 300K</mark> Q = 48 g_{th} ≈ 3x10⁶ cm⁻¹

material gain g = 3000 cm⁻¹

DALLAS

Design: Optical cavity mode

Design:

Optical cavity mode

Proof of concept: Optically pumped laser

Design:

Optical cavity mode

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Demonstration: Electrically pumped laser

Design:

Optical cavity mode

Design: Optical cavity mode

Proof of concept: Optically pumped laser

Analysis: • Modulation speed

• Energy efficiency

Multi-physics design for electrical pumping: Optical, electrical, thermal

Demonstration: Electrically pumped laser

Design: Optical cavity mode

Insertion into Photonic ICs

• Energy efficiency

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Demonstration: Electrically pumped laser

Cavity design: metallo-dielectic cavity

Metallic cavity

Metallic cavity

Metallo-dielectric cavity

Metallic cavity

Metallo-dielectric cavity

M. P. Nezhad et al, *Nature Photonics*, 4, 6, 395-399, 2010 M.

A. Mizrahi et al, *Optics Letters*, 33, 1261-1263, 2008 Texas Photonics Center

A. Mizrahi et al, *Optics Letters*, 33, 1261-1263, 2008

Optically pumped room temperature nanolaser

electromagnetically isolated \checkmark sub-wavelength in 3D \checkmark room temperature operation electrically pumped X low lasing threshold \checkmark 1. -aser output (normalized) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1300 66 Pump Intensity (W/mm²) 1400 λ (nm) 1500 1600 2312

M. P. Nezhad et al, *Nature Photonics*, 4, 6, 395-399, 2010

Lasers in Photonic ICs

Texas Photonics Center

Multi-physics design for electrical pumping

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014); Texas Photonics Center

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014); Texas Photonics Center

InP undercut: Two-step selective etching

Before InP undercut

InP undercut: Two-step selective etching

Before InP undercut

HCI:CH₃COOH

HCI:H₃PO₄

InP undercut: Two-step selective etching

Before InP undercut

HCI:CH₃COOH

HCI:H₃PO₄

Optical: robust design via InP undercut

Effect of undercut sidewall angle

Qing Gu et al, IEEE JQE, Vol. 50, Issue 7 (2014); Janelle Shane et al, IEEE JQE, Vol. 51, Issue 1 (2015) Texas Photonics Center

Optical: robust design via InP undercut

Effect of undercut sidewall angle

Qing Gu et al, IEEE JQE, Vol. 50, Issue 7 (2014); Janelle Shane et al, IEEE JQE, Vol. 51, Issue 1 (2015) Texas Photonics Center

	SiO ₂
Thermal conductivity (W·m ⁻¹ ·K ⁻¹)	1.1
Refractive index	1.46

	SiO ₂	Al ₂ O ₃
Thermal conductivity (W·m ⁻¹ ·K ⁻¹)	1.1	2 - 20
Refractive index	1.46	1.64

Qing Gu et al, *Nanophotonics*, Vol. 4, Issue 1 (2015)

E-beam patterning/RIE (CH₄:H₂:Ar)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar)

Two-step selective InP wet etching

500 nm N++ InGaAs InP InGaAs Gain InP P++ InGaAsP InP Texas Photonics Center

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition 500 nm N++ InGaAs InP Dielectric InGaAs Gain InP P++ InGaAsP

InP

Texas Photonics Center

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact)

500 nm N++ InGaAs InP PR Dielectric InGaAs Gain

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching **Dielectric "shield" deposition** Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation

Texas Photonics Center

InP

P++ InGaAsP

InP

PR

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation

Acc.V

Spot Magn

10.00 kV 3.0 44972x SE

Det WD

500 nm

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation Bottom contact formation (Ti/Pd/Au)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation Bottom contact formation (Ti/Pd/Au)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation Bottom contact formation (Ti/Pd/Au)

500 nm

E-beam patterning/RIE (CH₄:H₂:Ar) Two-step selective InP wet etching Dielectric "shield" deposition Expose the pillar top (for top contact) Top contact (Ti/Pd/Au) formation Metal cavity (Ag/Au) formation Bottom contact formation (Ti/Pd/Au) Wire-bond to sample holder

Laser device in low magnification

Lasers in Photonic ICs

Texas Photonics Center

[1] Purcell et al, "Spontaneous emission probabilities at radio frequencies." Physical Review (1946)

[2] Gérard et al, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity." *Physical Review Letters* (1998)

Approach

• Emitter-field-reservoir model in the quantum theory of damping

- If the reservoir (environment) is cavity boundary
 - corresponds to the transparent medium condition

Texas Photonics Center

$$F_{P} = \frac{\pi \left(c/n_{r} \right)^{3}}{\tau_{coll}} \frac{\omega_{k}}{\overline{\omega}_{21}^{3}} \frac{1}{V_{a}} \left\{ \Gamma_{k} \right\} \int \int D(\omega_{21}) R(\omega - \omega_{21}, \tau_{coll}) L_{k} (\omega - \omega_{k}) d\omega d\omega_{21}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Inhomogeneous Homogeneous Cavity broadening broadening Cavity

Literature
$$F_P = \frac{3\lambda^3}{4\pi^2 n^3} \frac{Q}{V_{eff}} \propto \frac{Q}{V_{eff}}$$

Qing Gu et al, Optics Express, Vol. 21, No. 13 (2013)

Texas Photonics Center

$$F_{p} = \frac{\pi (c/n_{r})^{3}}{\tau_{coll}} \frac{\omega_{k}}{\overline{\omega}_{21}^{3}} \frac{1}{V_{a}} \{\Gamma_{k}\} \iint D(\omega_{21}) R(\omega - \omega_{21}, \tau_{coll}) L_{k}(\omega - \omega_{k}) d\omega d\omega_{21}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Inhomogeneous Homogeneous Cavity
broadening broadening lineshape
$$L_{k}(\omega - \omega_{k}) \text{ is the broadest}$$
of the three lineshapes
$$Literature \quad F_{p} = \frac{3\lambda^{3}}{4\pi^{2}n^{3}} \frac{Q}{V_{eff}} \propto \frac{Q}{V_{eff}}$$

UTDALLAS 28

Qing Gu et al, *Optics Express*, Vol. 21, No. 13 (2013)

Purcell factor, **T** = 300K

Spontaneous emission factor β

Spontaneous emission factor β

β = -	spontaneous emission into the lasing mode		
	spontaneous emission into the lasing mode	into other cavity modes	into free space radiation modes

	Conventional laser	Nanoscale laser			
Spontaneous emission factor β	0.00001	0.1 - 1			
Texas Photonics Center					

Spontaneous emission factor β

ß —	spontaneous emission into the lasing mode		
р – -	spontaneous emission into the lasing mode	into other cavity modes	into free space radiation modes

	Conventional laser	Nanoscale laser			
Spontaneous emission factor β	0.00001	0.1 - 1			
Texas Photonics Center					

β factor in nanolasers

β factor in nanolasers

β factor in nanolasers

β factor, T = 300K

β factor, T = 300K

UDDALLAS 32

Qing Gu et al, *Optics Express*, Vol. 21, No. 13 (2013) Texas Photonics Center

β factor, T = 300K

Qing Gu et al, *Optics Express*, Vol. 21, No. 13 (2013) Texas Photonics Center

β factor: temperature dependence

Purcell factor

$$F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{coll}} \frac{\omega_k(T)}{\overline{\omega}_{21}^3} \frac{1}{V_a} \{\Gamma_k\} \int \int D(\omega_{21}, T) R(\omega - \omega_{21}, \tau_{coll}, T) L_k(\omega - \omega_k, T) d\omega d\omega_{21}$$

Joseph Smalley et al, IEEE JQE, Vol. 50 (2014)

β factor: temperature dependence

Purcell factor

$$F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{coll}} \frac{\omega_k(T)}{\overline{\omega}_{21}^3} \frac{1}{V_a} \{\Gamma_k\} \int \int D(\omega_{21}, T) R(\omega - \omega_{21}, \tau_{coll}, T) L_k(\omega - \omega_k, T) d\omega d\omega_{21}$$

β factor: temperature dependence

Purcell factor

$$F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{coll}} \frac{\omega_k(T)}{\overline{\omega}_{21}^3} \frac{1}{V_a} \{\Gamma_k\} \int \int D(\omega_{21}, T) R(\omega - \omega_{21}, \tau_{coll}, T) L_k(\omega - \omega_k, T) d\omega d\omega_{21}$$

UT DALLAS 33

Joseph Smalley et al, IEEE JQE, Vol. 50 (2014)

Lasers in Photonic ICs

III-V/Si integration options • monolithic

heterogeneous

We Olesya Bondarenko et al, Applied Physics Letters, Vol. 103, 043105 (2013)

III-V/Si integration options • monolithic

heterogeneous

III-V/Si integration options • monolithic

heterogeneous

III-V/Si integration options • monolithic

• heterogeneous

III-V/Si integration options • monolithic

heterogeneous

Olesya Bondarenko et al, *Applied Physics Letters*, Vol. 103, 043105 (2013) Texas Photonics Center

III-V/Si integration options • monolithic

heterogeneous

Olesya Bondarenko et al, *Applied Physics Letters*, Vol. 103, 043105 (2013) Texas Photonics Center

III-V/Si integration options • monolithic

heterogeneous

- Large scale (mm scale)
- Low temperature process (< 400 °C)
- Direct bond between III-V and Si
- No alignment required

Texas Photonics Center

Olesya Bondarenko et al, IEEE Photonics Journal, Vol. 3 (2011)

Olesya Bondarenko et al, IEEE Photonics Journal, Vol. 3 (2011)

We Olesya Bondarenko et al, IEEE Photonics Journal, Vol. 3 (2011)

Texas Photonics Center

III-V/Si micro-DFB laser

III-V/Si micro-DFB laser

Olesya Bondarenko et al, *Applied Physics Letters*, Vol. 103, 043105 (2013) Texas Photonics Center

Outlook: Coupling light emission to waveguide

Wyung-Ki Kim et al, Optics Express, Vol. 21, (2013)

Texas Photonics Center

Design: Optical cavity mode

Insertion into Photonic ICs

Performance analysis

Summary:

- Nanolaser multi-physics design
- Thermal management
- Performance analysis
- Heterogeneous integration
 - of III-V/Si

Optically pumped laser

Multi-physics design

Electrically pumped laser

THANK YOU!

