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NIR photoreceptor reflectance varies across the retina



NIR photoreceptor reflectance varies over time
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1. Quantifiable / Repeatable
2. Dose sensitive
3. Functionally significant
4. Clinically relevant
5. Optimized

The road to a biomarker of cone function
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1. While imaging the cones with near infrared 
light, apply a visible light stimulus to the retina 
at the same location as the imaging field.

2. While imaging the cones with near infrared 
light, do nothing.

Subject View:

Designing an intrinsic experiment



• Co-register all frames from 
each image sequence (Dubra & 
Harvey 2010, Thévenaz et. al. 1998)

• Crop to common area
• Identify cone locations
• Mask out cones under 

vasculature (Tam et al. 2010)

Extracting the cone reflectance
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• Image mean affected by eye 
dryness, AO correction
 Normalized cone reflectance to 
image mean

• Characterizing the response to 
the stimulus
 Standardized each signal to pre-
stimulus mean and standard 
deviation
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The reflectance response is highly repeatable
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The action spectrum of the response should be consistent 
with phototransduction

• If these signals arise from 
phototransduction, their action 
spectrum should follow the 
human photopic luminosity 
function.* 

*The luminosity function 
approximates the average action 
spectrum of the cones.

Sharpe et al., 2005
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The reflectance response increases for all wavelengths



Determining the action spectrum
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The action spectrum of the intrinsic reflectance response 
approximates the photopic human luminosity function

Cooper et al., 2017
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The cone intrinsic reflectance response is mediated by 
phototransduction.

1. Quantifiable / Repeatable
2. Dose sensitive
3. Functionally significant
4. Clinically relevant
5. Optimized
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• X-linked inherited retinal 
degeneration

• Symptomatic in childhood
• Night blindness
• Visual Field loss 

• Initially in the periphery leading to 
tunnel vision

• Blindness in 30’s-40’s, although 
many patients maintain central 
vision until age 40-50

Choroideremia (CHM)

CHM
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Choroideremia (CHM)



Assessing function with a clinical gold standard

Choroideremia



Controls

Choroideremia

Assessing function with a clinical gold standard



The reflectance response in controls

Controls

Choroideremia



The reflectance response in choroideremia

Choroideremia

Controls



The cone intrinsic reflectance response has 
translational applications

1. Quantifiable / Repeatable
2. Dose sensitive
3. Functionally significant
4. Clinically relevant
5. Optimized








Pushing the limits

1. Quantifiable / Repeatable
2. Dose sensitive
3. Functionally significant
4. Clinically relevant
5. Optimized








The reflectance response of a cone population is 
heterogeneous across cones



The reflectance response of a cone population is 
heterogeneous across cones
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The reflectance response of a single cone is 
heterogeneous across trials



x50

1. While imaging the cones with near infrared 
light, apply a visible light stimulus to the retina 
at the same location as the imaging field.

2. While imaging the cones with near infrared 
light, do nothing.

Subject View:

Detecting the intrinsic response of a single cone 

10
Time (seconds)



Individual cones exhibit an intrinsic reflectance 
response
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The single cone intrinsic reflectance response



The single cone intrinsic reflectance response
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Individual cones exhibit an intrinsic reflectance 
response

1. Quantifiable / Repeatable
2. Dose sensitive
3. Functionally significant
4. Clinically relevant
5. Optimized
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The intrinsic reflectance response is a 
biomarker of cone function



Using intrinsic optical signals to 
visualize photoreceptor activity in 

human retina
Dierck Hillmann,1,2 Clara Pfäffle,2,3 Hendrik Spahr,2,3 Sazan Burhan,2

Lisa Kutzner,2 Felix Hilge,2 and Gereon Hüttmann2,3,4

1Thorlabs GmbH, Lübeck, Germany
2University of Lübeck, Institute of Biomedical Optics Lübeck, Germany
3Medical Laser Center Lübeck GmbH, Germany
4Airway Research Center North (ARCN), German Centre for Lung Research (DZL)



The human retina

● Layered structure of the retina
○ RPE
○ photoreceptors
○ bipolar cells
○ ganglion cells
○ nerve fibres

● Seeing begins in the photoreceptors
○ light sensitive receptors
○ photoabsorption initializes a signaling cascade

● Neurons and nerves 
○ initial post processing
○ transmit the signal to the brain



Reactions of photoreceptor to stimulation

Motivation to visualize photoreceptor activity

● Research on phototransduction or perception
● Clinical diagnosis
● Therapy monitoring

Optical detection of activity with intrinsic signals

● Changes in backscattering
● Changes in optical path length

○ refractive index
○ length

Any possible change is expected to be very small



A special OCT system...

Full-Field Swept-Source Optical Coherence 
Tomography

● High-Speed Camera (Photron SA-Z, 70,000 
frames/s, with 640 x 368 pixels)

● Superlum Broadsweeper 
(Δλ = 50 nm, λ0 = 840 nm)

● During the laser sweep, each pixel of the 
camera acquires one A-scan

● Volumetric imaging
● 6 ms for one volume, up to 166 volumes/s
● More than 40 MHz A-scan rate
● Laterally phase stable
● White light stimulus with about 10 µW



Possibilities of phase sensitive OCT

● Post-processing
○ intra-volume motion and dispersion 

correction
○ inter-volume motion correction
○ computational aberration correction
○ co-registration
○ segmentation

● Tracking single photoreceptors over a few 
seconds with high temporal resolution



● 50 ms stimulus
● 6 ms between volumes

Does reflected intensity change?

● No reproducible, clear changes observed



Principle of phase evaluation

● Only phase changes give information
● Axial phase difference between the 

○ Inner segment/Outer segment
○ Outer segment tips

● Temporal phase difference to a pre-stimulus 
volume



Observed changes in phase

● Same measurement (50 ms stimulus, 6 ms/volume); with phase evaluation



Studying the time course and signal dependencies

● Phase changes are repeatable
● Signal slope seems to be 

independent of stimulus strength
● Initial “dip” dependent on stimulus 

strength
● Signal increases with longer 

stimulation



Enhancing the signals...

● Continuous stimulation and longer measurement time enhances signals



Activity of single cone photoreceptors

● Attempt to assign the activation signal to 
single cones 

○ Filtering the signals in time
○ Setting a certain threshold

● Same cones appear to not react
○ Reproducible in a 10 minute time frame



Visualizing ganglion cell activity

● Method can be applied to ganglion cell
layer

● Signal is significantly weaker and requires 
additional post processing

● When compared to the photoreceptor 
response, signal is laterally shifted and 
deformed



Conclusion and Outlook

● We observed clear intrinsic optical signals upon light stimulation with high-
speed full-field swept-source OCT in living humans

● We visualized
○ photoreceptor activity
○ ganglion cell activity

● We measured time course and dependencies on the stimulation
● Results suggest osmotically driven process linked to ion influx/efflux and 

photo current
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Imaging structure and function in the living human retina 
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Existing Methods for Testing Retinal Function

Subjective testing
 Visual acuity / contrast 

sensitivity tests
 Psychophysics

Poor spatial resolution; 
subjective effects often manifest 
late in disease progression

Electrophysiology
 ERG
 mfERG

Poor spatial resolution; slightly 
invasive; long duration of tests; 
crosstalk between 
photoreceptors and 
postreceptoral neurons



Significance of Functional Photoreceptor Imaging

Clinical significance:
• Earlier detection of retinal degenerations
• Improved assessment of therapeutic efficacy (stem cells, gene therapy, drugs)
• Disease monitoring with better sensitivity and spatial resolution

Research significance:
• Improving our understanding of disease mechanisms (e.g., combined with structural 

RPE imaging and choriocapillaris angiography in AMD)
• Phototransduction is a well-understood process, but has not been studied extensively 

in vivo



OCT Principle

Detector



http://www.zmpbmt.meduniwien.ac.at
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Aberrations in the Eye



Principle of Adaptive Optics

(A) (B)

Mosaic of photoreceptors, (A) before and (B) 
after AO correction.



Azimipour M, Zawadzki RJ, Gorczynska I, Migacz J, Werner JS, Jonnal RS (2018) Intraframe motion correction for raster-scanned adaptive optics images using strip-based 
cross-correlation lag biases. PLoS ONE 13(10): e0206052.

AO-OCT Provides Three-dimensional Cellular Resolution

Averaging the AO-OCT volume in the two lateral dimensions produces a longitudinal reflectance profile, shown (a) in log
scale. By extracting and averaging together corresponding depths of interest from the motion-corrected volumetric image,
projections of (A) Henle fiber layer (HFL), (B) cone outer segments (COS), and (C) retinal pigment epithelium (RPE)
layers can be produced.



Conceptual diagram of OCT imaging. OCT is principally a depth imaging
modality.

Referenced Phase Measurement in OCT

Representative phase changes in two single cones.
For each cone, the temporally wrapped data are
shown in the top plot (green markers) and temporally
unwrapped data shown in the bottom plot (blue
markers).

Ravi S. Jonnal, Omer P. Kocaoglu, Qiang Wang, Sangyeol Lee, and Donald T. Miller, "Phase-sensitive imaging of the outer retina using optical coherence tomography and 
adaptive optics," Biomed. Opt. Express 3, 104-124 (2012)



Cone mosaic of the same retinal patch under four different imaging conditions: short coherence
and no stimulus (upper left), short coherence and stimulus (upper right), long coherence and no
stimulus (lower left), and long coherence and stimulus (lower right). The long
coherence/stimulus video shows the most scintillation-nearly every cone scintillates. A few cones
appear to scintillate in the short coherence/stimulus case.

Early Evidence of Light-Induced OS Swelling

Ravi S. Jonnal, Jungtae Rha, Yan Zhang, Barry Cense, Weihua Gao, and Donald T. Miller, "In vivo functional imaging of human cone photoreceptors," 
Opt. Express 15, 16141-16160 (2007)



Recent Measurements of Light-Induced OS Swelling

Zhang et al., 2017
In response to light, 
mouse rods elongate 
(and scatter more), 
shown with 
conventional OCT.

Lu et al., 2017
In response to 
light, human rods 
elongate, and the 
IS/OS-RPE 
distance changes., 
shown with 
conventional OCT.

Hillmann et al., 2016
In response to light, peripheral human cones 
elongate, as shown by phase-sensitive swept-source 
OCT with digital aberration correction.



Adaptive Optics Swept-source OCT at 1.6MHz

Mehdi Azimipour, Justin V. Migacz, Robert J. Zawadzki, John S. Werner, Ravi S. Jonnal, "Functional retinal imaging using adaptive optics 
swept-source OCT at 1.6MHz",  bioRxiv 420240 (under review)



A critical feature of this system’s 
design is its speed. For the most 
intense stimuli, we observed 
initial phase changes of up to 50 
rad/s. In order to correctly unwrap 
phase, the phase change between 
consecutive samples should be 
less than π radians.

Adaptive Optics Swept-source OCT at 1.6MHz

Mehdi Azimipour, Justin V. Migacz, Robert J. Zawadzki, John S. Werner, Ravi S. Jonnal, "Functional retinal imaging using adaptive optics 
swept-source OCT at 1.6MHz",  bioRxiv 420240 (under review)





Strip-based registration permits averaging of AO-
OCT volumes. Top panel shows (A) single B-
scan and (B) average of 30 B-scans. En-face
projection of cone mosaic from a (C) single and
(D) average of 30 motion-corrected volumes of a
1×1 degree patch acquired at 2.5o temporal from
the foveal center.

Normalized spectrum of imaging
light source, bleaching light, and
also normalized relative response of
‘S’, ‘M’, and ‘L’ cones.

Functional Retinal Imaging in Human



Imaging Protocol

Four normal 
subjects, dilated 

and dark 
adapted for 15 

min

Closed-loop AO 
correction of 6.75 

mm pupil, with 50-
100 nm RMS 
residual error

OCT volumes 
acquired at 32Hz 
for 10 seconds

10 ms stimulus 
flash delivered at 
2-second mark

Mehdi Azimipour, Justin V. Migacz, Robert J. Zawadzki, John S. Werner, Ravi S. Jonnal, "Functional retinal imaging using adaptive optics 
swept-source OCT at 1.6MHz",  bioRxiv 420240 (under review)



Results

(A) Response of a single cone to 70% photopigment bleaching stimuli. The top row shows examples of motion-
corrected projections of the cone's neighborhood. A time-series of the cone's axial profile (M-scan) is shown
below the projections, with a green line indicating the stimulus flash. The phase difference between the IS/OS
and COST was monitored as a function of time and can be seen in the bottom plot. (B) OS length change as a
function of time for lower L/M photopigment bleaching percentages of 1.8, 3.5 and 7. Each curve was produced
by averaging responses of 10-30 cones.

M. Azimipour, J.V. Migacz, R. J. Zawadzki, J .S. Werner, R. S. Jonnal, “Functional retinal imaging using adaptive optics swept-source OCT 
at 1.6MHz”, bioRxiv 420240 (under review)



Changes in the axial morphology of cones for 
photopigment bleaching percentages of (A)1.8%, (B) 
7% and (C) 70%. Red arrows shows appearance of an 
extra band between IS/OS and COST. The blue arrow 
indicates changes observed in the RPE and subretinal 
space.

 The extra band in OS could be generated, for 
instance, by an abrupt change in disc spacing or 
concentration of a visual cycle intermediate.

 The contrast reduction between COST and RPE 
could be an indication of melanosome movement 
into the apical part of the RPE cell.

Results



Possible S-cone mosaic investigated with AO-OCT

Time-series of the cone’s axial profile
(M-scan): (A) possible "S" cone, (B)
"L" or "M" cone. (C) Response of the
cones shown in panels "A" and "B" to
a 10ms bleaching flash delivered at
2s. The cone with shorter OS length
did not show any response to the
stimuli.

Normalized spectrum of imaging
light source, bleaching light, and
also normalized relative response of
‘S’, ‘M’, and ‘L’ cones.

Possible S-cone mosaic investigated with adaptive optics optical coherence tomography (under preparation)



1. Functional AO-OCT permits the measurement of light-induced changes in the cones 
(and potentially other retinal layers) with cellular resolution. 
These changes include:

• OS swelling, encoded in the phase of the outer retinal bands
• Possible changes in the intensity of the bands
• Movement of bands (or sub-bands) corresponding to subcellular shifts of 

scatterers or translocation of biomolecules
2. High-speed (30 Hz+) volume rates are critical for measuring the rapid phase changes

in cones.
3. Due to variations in the band movements among cells, AO is likely necessary to

visualize and study these changes.
4.   AO-OCT offers a unique set of biomarkers of photoreceptor function.

Conclusions
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