Integrated Photonics on Silicon for the Visible Spectrum

Joyce Poon

Max Planck Institute for Microstructure Physics University of Toronto

OSA Integrated Photonics Technical Group Webinar, July 7, 2021

Foundry silicon photonics

Manufacture photonic chips in microelectronics infrastructure \Rightarrow scalability, \$B industry

Foundry silicon photonics: the opportunity

Large wafers

 \Rightarrow Mass-manufacturing, reduce cost

High density integration

⇒ Sophisticated photonic circuits

2D and 3D integration

 \Rightarrow Combine photonics with electronics, other technologies

Photonics for a broader range of applications

⇒ Go beyond telecom

Cross-section of a typical Si photonic platform

- Si waveguide (2-3 etch depths)
- Silicon nitride waveguide
- 2-3 routing metal layers

- Germanium photodetectors
- Telecom applications

Silicon modulators (P, N implants)

Commercialization ongoing

Lidar

Special Purpose Compute Engines

Si photonics for the visible spectrum? Some applications

Quantum Science and Computing (ion traps and cold atoms)

R. J. Niffenegger et al., Nature, 2020.

K. K. Mehta et al., Nature, 2020.

Spectroscopy and Fluorescence Sensing

Beam-Scanners

Shin et al., Optics Letters, 2020.

Benefits of silicon photonics \neq Silicon waveguides!

Elements used in the semiconductor industry

https://blog.lamresearch.com/happy-150th-birthday-to-the-periodic-table/

SiN or Al₂O₃ as waveguides Selected progress on 200mm or 300mm Si

Material	Foundry	Reported Wavelength	Waveguide Loss	Reference
SiN (PECVD)	IMEC \rightarrow Pix4Life BioPIX	532-900nm	< 1dB/cm @532nm	A. Z. Subramanian et al., IEEE Photonics Journal, 2013.
SiN	Witzens Group, CMOS Pilot Line	660 nm	< 0.5 dB/cm	S. Romero-García et al., Opt. Express, 2013.
SiN	AIM Photonics	635 nm	?	C, V. Poulton, et al. Opt. Lett. 42, 21-24, 2017.
SiN (LPCVD)	Ligentec	?	0.1 dB/cm?	Press releases
SiN (LPCVD)	LioniX	405-640 nm	0.3-0.4dB/cm @405nm	Mashayekh et al., Opt. Express. 29, 8635, 2021.
AI_2O_3	MIT Lincoln Labs	371-1092 nm	2.6 dB/cm @371nm 0.6 dB/cm @458nm	C. Sorace-Agaskar, et al., Proc. SPIE, 2018.
AI_2O_3	Ram Group, MIT with MIT Lincoln Labs	371-458 nm	3dB/cm @371nm ~1dB/cm @ 458nm	G. N. West et al., APL Photonics, 2018.

Our approach: SiN on 200mm Si, 193nm DUV

- (Singapore)
 - Dr. Xianshu Luo •
 - Dr. Patrick Lo

with Advanced MicroFoundry

Acknowledgment: Visible Photonics Team

Wesley Sacher

Zheng Yong

Yiding Lin

Alperen Gövdeli

Youngho Jung

Jason Mak

Saeed Azadeh

Hong Chen

Andrei Stalmashonak

Optics EXPRESS

Single-mode, high confinement waveguides

Bilayer edge couplers

Manuscript submitted.

Wavelength (nm)

Thermo-optic phase-shifters

$P_{\pi} \sim 0.8 \text{ mW} @ 445 \text{nm}$

SiN-Si waveguide photodetectors

Dark current: 28pA @-2V *l* = 50um

Lin et al., CLEO 2021

Application: Light for brain activity mapping

Genetically modified neurons actuated by or emit light •

Functional optical (fluorescence) imaging

genetically encoded calcium or voltage indicators

Deisseroth lab

Optogenetics deterministic photo-actuation of neurons

Implantable neurophotonic probes

Overcome optical scattering limit for deep (> mm) brain access Massively parallel interrogation with single neuron resolution Foundry manufacturing for complexity and broad dissemination

Foundry-fabricated neurophotonic probes

- 200mm (8") wafers, DUV lithography, full-wafer thinning
- >1600 probes on 1 wafer

Xianshu Luo Patrick Lo

Acknowledgment: Neuroprobe Team

Wesley Sacher

Fu-Der Chen

John Straguzzi

Hannes Wahn

alumni

Ilan Felts Almog

Thomas Lordello

Taufik Valiante (UHN, U of T)

(UHN, U of T)

Andres Lozano Michael Roukes (Caltech)

Youngho Jung

Homeira Moradi (Valiante-UHN)

- Laurent Moreaux (Caltech)
- Xinyu Liu (Caltech)
- Michael Chang (Valiante-U of T, UHN)
- Azadeh Naderian (Valiante-UHN)

- Prajay Shah (Valiante-UHN)
- Anton Fomenko (Lozano-U of T, UHN)
- Sara Mahallati (Valiante-U of T, UHN)

Approach: Passive neurophotonic probe with spatial addressing

Fiber Bundle Cross-Section

with Auto-Pix: the Pixel Dance!

Mounted Probe

Improvements: Custom multi-core optical fibers & Mini-Scan

Azadeh et al., CLEO, 2021.

Lightsheet fluorescence microscopy

- Selective Plane Illumination Microscopy •
- Image 1 plane at a time \Rightarrow Large volume imaging \bullet
- So far, only applies to transparent small organisms due to bulkiness of the optics •

https://www.microscopyu.com/techniques/light-sheet/light-sheetfluorescence-microscopy

https://www.photometrics.com/applications/appnotes/dispim

Lightsheet imaging neurophotonic probe

- Synthesize lightsheet from multiple grating couplers •
- Implantable miniature light source \Rightarrow lightsheet microscopy in non-transparent organisms •

Sacher et al., Neurophotonics, 2021.

Taufik Valiante, Andres Lozano

Light-sheet characterization

Top-down image in fluorescein solution

Extracted average sheet thickness in free space from imaging a fluorescent thin film

In scattering media, uniformity is higher

Fixed Tissue validation

- ≈1mm thick fixed slice from Thy1-GCaMP6s transgenic mouse •
- Dentate gyrus, < 100µm depth •

Light-sheet probe illumination

3-4x average contrast enhancement for neurons

Epifluorescence

Brain slice functional imaging

 \approx 450µm thick perfused cortical brain slice from Thy1-GCaMP6s transgenic mouse. \bullet

Video accelerated 10x

In vivo experiments

Activity imaged

Beam-steering neurophotonic probes

- High spatial resolution optogenetics and functional optical imaging \bullet
- Miniature optical phased array; No moving parts in tissue \bullet

Beam-steering by wavelength tuning (external cavity singlemode laser)

28

Beam-steering neurophotonic probes

• Gratings as light emitters

Michael Roukes

Taufik Valiante

Sacher et al., CLEO 2019. Paper ATh4I.4 Manuscript in preparation

29

In vitro validation Optogenetic stimulation

- VGAT-ChR2-EYFP: ChR2 expressed in interneurons
- Very low power: max. laser output power ~10mW

Cerebellum Molecular Layer

Light Evoked Activity

50

40

³⁰ 20 20

10

0

Data Analysis

Sidelobe-free beam-steering OPA

- End-fire phased array into free propagation region slab Sidelobes are separated from the main beam in the slab Out-of-plane emission by the grating
- ٠ • •

Chen et al., CLEO 2021.

-		
	Property	Value
/	Free spectral range	23 nm near λ=470nm
nm	Full steering range	23.7°
7	Single-lobe steering range	16°
	Beam width (FWHM)	2.2°
-		

Neuroprobe characterization

 \bullet

Average beam FWHM = 11.2 μ m

Open challenge: High-speed modulator or phase-shifter

M.Notaros et al., Frontiers in Optics, 2018. FW6B.5

K. Wörhoff et al., Proc. SPIE, 2019.

S. Zhu et al., OFC 2019, W2A.11.

LiNbO₃?

B. Desiatov et al., Optica, 2019.

Open challenge: Laser integration

GaAs and GaN (?) integration on SiN?? (Nexus Photonics)

H. Park et al., Optica, 7: 336-337, 2020

GaN integration on TiO₂?? (UCSB, Bowers Group)

Bonding was not successful...

T. Kamei et al., Physica Status Solidi A, 1900770, 2020

Many elements used in the semiconductor industry!

https://blog.lamresearch.com/happy-150th-birthday-to-the-periodic-table/

Summary: Visible light photonics and neurophotonics

- Foundry Si photonics for visible light \Rightarrow **A new class of nano-neurophotonic** tools for brain recording & stimulation
- Passive neurophotonic probes bring patterned photostimulation into brain tissues without any lenses
- Applications of visible light photonics: biosensing, quantum photonics, optical phased arrays
- Opportunities for new devices, platforms, and integration approaches

Acknowledgments

www.photon.utoronto.ca I www.mpi-halle.mpg.de/NINT

Postdocs Saeed Azadeh Hong Chen Youngho Jung Jianfeng Li Yiding Lin Jason Mak Torrey Thiessen Zheng Yong

PhD Students Fred Chen Alperen Govdeli Tianyi Li Xin Mu Ankita Sharma Jack Xue **Masters Students**

Peisheng Ding Steven McKiel

Staff and Scientists

Michael Brunk Ka My Dang **Wesley Sacher** Andrei Stalmashonak John Straguzzi Hannes Wahn Frank Weiss

Interns and Undergrads

Chris Alexiev Raymond Hawkins Hend Kholeif Alec Xu Zhengbang Zhou

Recent Alums Thomas Lordello Ilan Felts Almog Dave Jeong Annemarie Wenzel Evan Delacu Collaborators Patrick Lo, Xianshu Luo (AMF) Sylvie Menezo (SCINTIL) Ted Sargent (U of Toronto) Stuart Parkin (MPI-Halle) Michael Roukes (Caltech) Taufik Valiante (UHN-Krembil) Homeira Moradi (UHN-Krembil) Andres Lozano (UHN-Krembil)