WE ARE 心N

Interface and Defect-induced Scattering in Optical Coatings

Jinlong Zhang, Tongji University

The OSA Thin Films Technical Group Welcomes You!

Technical Group Leadership 2020

Chair Dr. Jue Wang Corning Incorporated USA wangj3@corning.com

Vice Chair Dr. Anna Sytchkova ENEA - Casaccia Research Centre, Italy anna.sytchkova@enea.it

Social Media Officer Dr. Selim Elhadj Lawrence Livermore National Laboratory, USA elhadj2@llnl.gov

Event Officer Dr. Xinbin Cheng Tongji University, China chengxb@tongji.edu.cn

Webinar Officer (Nano-Structured Based) Dr. Amirkianoosh (Kiano) Kiani UOIT. Canada Amirkianoosh.kiani@uoit.ca

Webinar Officer (PVD Based) Dr. Julien Lumeau Institut Fresnel, France julien.lumeau@fresnel.fr

Webinar Officer (ALD Based) Dr. Adriana Szeghalmi Fraunhofer IOF, Germany Adriana.Szeghalmi@iof.fraunhofer.de

Thin Films **Technical Group**

Our Technical Group at a Glance

Our Focus

- Optical thin films and interference coatings from fundamentals to applications
- Serving a global community with thousand members like YOU

Our Mission

- To connect people from academia, institutions and industries in the field
- To bridge the fundamentals, the know-hows and the new development
- To promote networking and career development through continuous learning

Where To Find Us

- Technical Group Website: www.osa.org/ThinFilmsTG
- LinkedIn: <u>www.linkedin.com/groups/4783616</u>
- Please let us know if you are interested in sharing your work or have ideas for our group activities

Today's Webinar

Interface and defect-induced scattering in optical coatings

Dr. Jinlong Zhang

Institute of Precision Optical Engineering, Tongji University jinlong@tongji.edu.cn

Speaker's Short Bio:

Holds PhD in Optical Engineering from Zhejiang University 10+ years in design, simulation and deposition for high quality optical coatings Extensive experience with developing nanostructure thin films

Interface and defect-induced scattering in optical coatings

Jinlong Zhang, jinlong@tongji.edu.cn

Institute of Precision Optical Engineering Key Laboratory of Advanced Micro-Structured Materials MOE

2020-05-26

01 Background

02 Recent progress of interface scattering

03 Simulation, control of defect-induced scattering

04 Conclusion

Light scattering

Scattering light: Stray light that deviates from the mirror image due to structural defects in the film

- Reducing the optical throughput
- Decreasing the image resolution by the narrow-angle scattering
- Decreasing the image contrast or signal-to-noise ratio by the wide-angle scattering
- Formation of ghost images, ...

$$PSF(\mathbf{r}) = PSF_{geom}(\mathbf{r}) * PSF_{scat}(\mathbf{r})$$
$$\sim ARS(a_i r)$$

Degradation the performance of optics

Background

Light scattering

Particularly critical for optics at short wavelengths, high resolution imaging, ultra-low loss laser optics, etc.

laser gyroscope

gravitational wave detection

cavity ring-down spectroscopy

EUV mirror

- Ultra-low loss laser coatings in the laser cavity mirrors need to control the scattering to ppm level
- Light scattering significantly enhanced due to the short wavelength
- The lock-in threshold of Laser Gyros is limited by scattering in the counterpropagating direction

Background **Sources of light scattering** Scattering loss bulk inhomogeneity local defects surface/interface roughness nonlocal scattering local scattering ٠n N defect

1、 J. C. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., (SPIE, Bellingham, Wash., 1995)

Recent technology

advanced substrate processing/cleaning technology

>

The best technical route: SiO₂/Ta₂O₅ by IBS

Background

scratches, pits can be well controlled by super polishing

Background

Year	Research Unit	λ/nm	σ/nm	<i>TIS</i> _{exp} /ppm
1999	RUS, POLYUS	632.8	0.35	50
2001	UK, BAE	632.8	0.1	6
2004	USA, REO	632.8	0.053	0.8
2004	USA, LIGO	1064	< 0.05	>> 0.5
2012	USA, IDEX	633	< 0.05	>> 0.5

>

$$TIS = 1 - \exp\left[-\left(4\pi\sigma\cos\theta_i/\lambda\right)^2\right] \approx \left(4\pi\sigma\cos\theta_i/\lambda\right)^2$$
$$\sigma = \sqrt{2\pi \int_{\sin 2^\circ/\lambda}^{\sin 85^\circ/\lambda} PSD(\theta_s) d\theta_s} \quad \text{~ISO: 13696}$$

$T/S_{exp} >> T/S_{theo}$, interface scattering can not be neglected

$$ARS(\theta_{s}) \propto \sum_{i=0}^{N} \sum_{j=0}^{N} F_{i}F_{j}^{*}PSD_{ij}(f)$$

• reducing roughness

• reducing optical factor

$$\implies ARS(\theta_{s}) \propto \left| \sum_{j=0}^{N} F_{j} \right|^{2} PSD(f)$$

$$F_{j} = \left(\varepsilon_{j} - \varepsilon_{j-1} \right) E\left(z_{j}, \theta_{0} \right) E\left(z_{j}, \theta_{S} \right)$$
• creating destructive interferences

International round-robin experiment to test the International Organization for Standardization total-scattering draft standard

Lab	Sphere Type	Sphere Diameter (mm)	Range of Acceptance Angles (deg)	Angle of Incidence (deg)	Beam Diameter (mm)	Background Signal (ppm)	Relative Error (%)	Number of Points	Point Geometry
DMS	Coblentz	254	2.50 - 70.0	$<\!\!2.0$	2.5	5.0	2-3	3	Random
IOF	Coblentz	350	2.00 - 85.0	< 1.0	0.3	< 0.1	< 10	201, 501, 1000	Line
JOP	Ulbricht	220	2.00 - 85.0	~ 0.2	1.0	1.4 - 4.0	< 10	201	Line
LMTB	Ulbricht	150	2.90 - 70.0	< 1.5	1.5	< 5.0		202	Line
LZH	Ulbricht	250	2.00 - 88.0	<3.0	0.4	< 0.5	< 10	300, 380, 1000	Line
NAWC	Coblentz	220	2.85 - 80.0	~ 0.5	1.0	20.0	~3	19	Circle
LINOS	Ulbricht	150	2.00 - 82.0	< 1.5	1.5	< 5.0	< 10	50	Line
TOL	Ulbricht	250		~ 5.0	1.0	9.0		129	Line
TUD	Ulbricht	152	1.90 - 82.0	~ 2.0	1.0	2.0	< 10	51	Line

>

Background

significantly different results

characterization and control of the local scattering is the key issue

residual defects are unavoidable

01 Background

02 Recent progress of interface scattering

03 Simulation, control of defect-induced scattering

04 Conclusion

Interface scattering

Scattering theory

Vector perturbation theory ($\sigma \ll \lambda$ **)**

Polarization

- PSDs of individual surfaces (i = j)
- Cross-correlation properties $(i \neq j)$

$$F_{j} = \left(\varepsilon_{j} - \varepsilon_{j-1}\right) E\left(z_{j}, \theta_{0}\right) E\left(z_{j}, \theta_{s}\right)$$

Coating design, Correlation of PSD

Two approaches to control the interface scattering

- 1、 J. M. Elson et al., Appl. Opt. 19, 669-679 (1980)
- 2, P. Bousquet et al., J. Opt. Soc. Am. 71, 1115-1123 (1981)

Interface scattering

Relevant statistical surface characteristics:

>

- Surface height distribution function
- Surface autocovariance function

Surface Power Spectral Density function

$$PSD(f_x, f_y) = \lim_{L \to \infty} \frac{1}{L^2} |FT\{h(x, y)\}|^2$$

surface spatial frequencies

surface topography

- Power of different roughness components
- Fourier Transform of Autocovariance Function
- Isotropic roughness: $PSD(f_x, f_y) \rightarrow PSD(f)$

Rms roughness

$$\sigma = \sqrt{2\pi \int_{f\min}^{f\max} PSD(f)f\,df}$$

- Standard deviation of surface topography
- Band-limited / relevant roughness

1、 J E. Harvey, S. Schröder, N. Choi, Opt. Eng. 51(1) (2012) 2、 A. Duparré, J. M. Bennett et al., Appl. Opt. 41 (2002)

3、 J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, (OSA, Wash. D.C., 1999)

Correlation of interface roughness 12

Completely correlated interfaces model

02

 $PSD_F = PSD_S = PSD_{SF}$

$$ARS \propto \frac{1}{\lambda^4} \left| \sum_{j=0}^N F_j \right|^2 PSD(f)$$

Completely non-correlated interfaces model

 $PSD_{SF} = 0$

02

> Coating design to control Interface scattering

OPTICAL ENGINEERING

Previous methods to adjust optical factors

2. C. Amra, G. Albrand, P. Roche, Theory and application of antiscattering single layers: antiscattering antireflection coatings, Appl. Opt. 25(16), 2695-2702 (1986).

state-of-the art deposition technologies for low-loss coatings

There is no solution of HR coating design to obtain destructive interferences of the scattering

Add FP structure in HR coating, not modify reflection $F_i = (\varepsilon_i - \varepsilon_{i-1}) E(z_i, \theta_0) E(z_i, \theta_s)$

 \mathcal{E}_{j} - \mathcal{E}_{j-1} exhibits opposite sign on both sides of the cavity, optical factors at the interfaces are in opposite phase

02

 F_j at top interfaces are in phase with that at inner interfaces due to the accumulation of the phase difference in large scattering angle

Reduce scattering in the near specular range from 10 to 35 degree, an increased value of the optical factors in large scattering angles

A proper HR coating structure with two FP cavities

02

optical factors at interfaces have opposite phase

optical factors at the top two interfaces have opposite phase

It is still possible to reduce the total scattering in the entire reflection hemisphere

The destructive interference occurs in all directions for s-pol. The destructive interference does not occur in large scattering angles for p-pol.

The QWHR and LSHR coatings were deposited by ion-assisted deposition

The PSD functions fitted with ABC model, The PSDs of both coatings are quite similar

02

The destructive superposition of the optical factors results in the omnidirectional suppression of ARS for s-polarization

02

Interface scattering

J. Zhang, et al., Reducing light scattering in high-reflection coatings through destructive interference at fully correlated interfaces, Opt. Lett. 42(23), 5046-5049 2017.

18

INSTITUTE OF PRECIS

OPTICAL ENGINEERING

Modify the correlation of PSD

Interface scattering

02

$$ARS\left(\theta_{s}\right) \propto \frac{1}{\lambda^{4}} \sum_{i=0}^{N} \sum_{j=0}^{N} F_{i}F_{j}^{*}PSD_{ij}\left(f\right)$$

Traditional means of optimizing PSD

Reducing substrate roughness and Reducing surface roughness

Scattering of QWHR is lower in the case of fully uncorrelated interfaces

The approach to optimize the correlation of interface roughness *PSD_{ii}(f)* to reduce interface scattering

Modulating *PSD_{ij}(f)* by oblique multilayer deposition

 $PSD_{ij,oblique}(f) = PSD_{ij,normal}(f)e^{-2\pi i \times f(z_i - z_j)\tan\beta}\cos(\varphi_s + \delta)$

The total scattering loss is reduced by 28% with deposition angle of 30° in Mo/Si (HL)^25, λ =13.5nm

OPTICAL ENGINEERING

02

Scattering study for Laser gyro

In the case of fully correlated roughness, the backscattering intensity could be only reduced through a decrease in the reflectivity

Oblique deposition make the scattering pattern asymmetric

Suppressed backscattering in towards the incident beam by oblique deposition

 Gullikson E M, Stearns D G. Asymmetric extreme ultraviolet scattering from sputter-deposited multilayers[J]. Physical Review B, 1999, 59(20): 13273.

A simplified model of a bi-layer by oblique deposition on a substrate

The condition of total scattering suppression

$$ARS = 1 + Ce^{ic} + Be^{ib} = 0$$

22

J. Zhang, et al,. Opt. Express, 27(11), 15262-15282 2019.

02

Interface scattering

Design bi-layers providing total scattering suppression at any desired scattering angle

IBS to deposit the bi-layer

10 $1 (\alpha = 0)$ $2 (\alpha = 10.6^{\circ})$ 10 $3(\alpha = 7.7)$ ARS (srad⁻¹) 10-5 10 10 Averaged noise level 10 10 -80 -60 -40 -20 0 20 40 60 80 Scattering angle (deg)

The growth angle is difficult to determine

The suppression of backscattering in the desired direction due to interference was experimentally observed

Scattering suppression of HR

Suppresses scattering of HR coatings for both counter-propagating waves at once

02

The condition of the scattering suppression for bi-layer

$$A(\theta_{i} = -\theta_{s} = 45^{\circ}) = \frac{k^{2}}{4\pi} (1 - \varepsilon_{L}) \cdot E_{0}^{2}(\theta_{i}) \cdot \frac{\kappa_{H}^{2}}{\kappa_{L}^{2}} \cdot \frac{e^{2i\eta_{BL}}}{1 - e^{-i\eta}\kappa_{L}^{2}/\kappa_{H}^{2}} \cdot \zeta_{ML}^{F}(\vec{v})$$

$$\times \left[1 - \frac{\varepsilon_{L} - \sin^{2}\theta_{i}}{\varepsilon_{H} - \sin^{2}\theta_{i}} \left(\frac{\varepsilon_{H} - \varepsilon_{L}}{\varepsilon_{L} - 1} e^{-i\eta_{BL}} + e^{-i\eta} \right) \right] = 0; \quad \kappa_{H,L} = \frac{2\pi}{\lambda} \sqrt{\varepsilon_{H,L} - \sin^{2}\theta_{i}}$$

The maximal field intensity is achieved on the mirror top resulting in increasing absorption and parasitic scattering from the contamination

01 Background

02 Recent progress of interface scattering

03 Simulation, control of defect-induced scattering

04 Conclusion

Defect scattering

Research progress of defect scattering

simple shaped defect

e.g., dome shaped defect on sub.

>

based on first-order perturbation

$$BRDF\cos\theta \propto \left[\frac{J_1\left(\frac{2\pi a}{\lambda}\sin\theta\right)}{\frac{2\pi a}{\lambda}\sin\theta}\right]^2$$
$$\sin\theta_m \approx \frac{Z_m}{\pi}\frac{\lambda}{2a}$$

 $\sin \theta_m \approx \frac{2m}{\pi} \frac{\pi}{2a}$ M. Zerrad, M. Lequime, C. Deumi & C. Amra, "Development of a goniometric light scatter instrument with sample imaging ability," Proc. of SPIE 7102, 7102071-71020715 (2008).

OPTICAL ENGINEERING

Simplified models in traditional analytical methods

03

The actually complexshaped nodular defects

sphere near, on or embedded into substrate

FDTD method is widely used in solving the scattering problem of the structure on the order of illumination wavelength

1、A. Doicu, Y. Eremin, et al., *Opt. Com.* 159(4), 266-277 (1999) 2、M J. Brett, R N. Tait, et al., *J. Mat. Sci.* 3(1), 64-70 (1992)

FDTD simulation process

FDTD simulation process

- region: PML boundary condition
- TFSF source: E=1 V·m⁻¹, λ =1064 nm, linear polarization, normal incidence

TFSF (total field scattered field) source separates the simulation region into two regions, the region inside TFSF box contains total field, the region outside contains only scattered field

SEM cross-sectional micrographs

03

FS-fused silica substrate, H-Ta₂O₅, L-SiO₂, FS $|(HL)^{13}L|$ Air @1064nm

the real shapes are exactly different from the 2.5dt models

Far field superposition

>

$$\begin{cases} E_{\text{amplitude}}^{2} = \left(\sum E_{0} e^{ik_{0} \cdot dr_{n}}\right) \cdot \left(\sum E_{0} e^{ik_{0} \cdot dr_{n}}\right)^{*}\\ E_{\text{intensity}}^{2} = nE_{0}^{2} \end{cases}$$

amplitude superposition

03

intensity superposition

when the average distance >> defect size, except for the enormous burrs and a coherent enhancement at the center, the rough outlines of the amplitude and intensity superposition are same

Far field to ARS

Scattering measurement results vs. simulation results – s direction

03

The characteristics of the defect-induced and roughnessinduced scattering are significantly different.

DIBS, 12 cm ion beam source for etching

>

Seed is completely embedded in the planarization layer, nodule is eliminated effectively.

Scattering measurement results before and after planarization

03

TS is effectively decreased after plan, for $\phi 1\mu m$ seed it almost reach to level of without nodule, but for $\phi 2\mu m$ seed it still large.

Roughness after planarization

03

Planarization process decreases the roughness, so the roughness-induced scattering in theory

Micrograph of nodule after planarization 37

AFM micrograph

03

SEM cross-section micrograph

The nodule was completely eliminated, even there existed a indentation upon the seed and the seed was etched partly.

Schematic diagram of nodule after plan

03

- Surface indentation is the reason for not complete elimination of the nodular defectinduced scattering
- Surface indentation may be caused by excessive etching

01 Background

02 Recent progress of interface scattering

03 Simulation, control of defect-induced scattering

04 Conclusion

Conclusion

 Scattering reduction of HR coatings by destructive interference of scattered waves on fully correlated interfaces

• Interference suppression of light back scattering through oblique deposition

 Quantitative assessment of defectinduced scattering in HR coatings, suppression of nodules with planarization

350

Optical 100

10

10

10-5

-80

ARS (srad⁻¹) 10 50

OPTICAL ENGINEERING

Thank you!

Han Wu, Lei Zhang, Hongfei Jiao, Xinbin Cheng, Zhanshan Wang

Sven Schröder, Marcus Trost (Fraunhofer Institute for Applied Optics and Precision Engineering IOF)

Igor V. Kozhevnikov (Shubnikov Institute of Crystalloraphy of Federal Scientific Research Centre)

NSFC for financial support

