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• Focus
• The OP TG focuses in the field of semiconductor lasers, amplifiers, LEDs and super 

luminescent diodes, and other areas related to optoelectronics
• Over 4,500 members within OSA

• Mission
• To benefit YOU
• Webinars, e-Presence, publications, technical events, business events, outreach 
• Interested in presenting your research? Have ideas for TG events? Contact 

winnie.ye@carleton.ca

• Find us here
• Website: www.osa.org/OptoelectronicsTG
• LinkedIn: www.linkedin.com/groups/8297718/

Technical Group at a Glance

mailto:winnie.ye@Carleton.ca
http://www.osa.org/OptoelectronicsTG
http://www.linkedin.com/groups/8297718/
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Today’s Webinar
Keep Photonics Under Control: How to Harness Programmable 

Photonic Circuits
Dr. Andrea Melloni, OSA Fellow, is Full Professor at Dipartimento di
Elettronica, Informazione e Bioingegneria at Politecnico di Milano where he
leads the group of Photonic Devices. With a background in microwaves, his
field of research is in the analysis, design, characterization and exploitation of
passive integrated optical devices for telecom and sensing. He is one of the
pioneers of the slow light concept and its exploitation in the linear and nonlinear
domains. In September 2008 he founded the company Filarete with the aim of
developing and commercializing ASPIC (www.aspicdesign.com), the first circuit
simulator for integrated optical circuits. He is active in characterization and
testing techniques (from wafer to module testing), numerical methods in
photonics (stochastic), development of high index contrast dielectric materials
(SiliconOxyCarbide), design and analisys of photonic integrated circuits,
biosensing (with exploitation of magnetic beads). Recently, he mainly focused
on the control and stabilization of photonic circuits with a new technique of non
invasive light monitors based on the natural surface state absorption
phenomena occurring in waveguides. These activities are at the basis of the
dynamic management and control of large and complex photonic integrated
circuits for reconfigurable, programmable, locking and adaptive functionalities.
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Keep Photonics Under Control:
How to Harness Programmable 

Photonic Circuits
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• Motivations and needs

• The ingredients: 
• monitors, actuators, electronics 
• techniques and algorithms:

• Thermal management
• Modulated signal for tuning
• Pilot tones

• The recipes

• The dishes:

• Filter tuning and operation

• Look up table generation

• Mode unscrambling

• Dispersive media compensation

Summary
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An Add-Drop Bandpass filter…
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A complex device…

16 filters
64 rings
32 Mach-Zehnder
32 modulators
16 PD
….
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PICs: uncertainties and variability

F. XIA, et al, Nat. Photonics, 2007

... fabrication tolerances

Courtesy of IBM, 2007

1nm tolerance in waveguide width, 100 GHz wavelength shift 

... temperature dependence
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... stochastic nature of parameters ... operational conditions
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... non linear effects
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...  adaptive tuning and locking to “external” drifts

λs λ
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Y. Shen et al, Nat Photonics 11 (2017)

...  programmable integrated photonics

L. Zhuang et al., Optica 2 (2015)D. Perez et al., Nat Communications 8:636 (2017)

PICs: adaptivity and programming
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(Negative) Feedback for control …

… also photonics needs feedback and control !!

• Human body temperature

• Production of human red blood cells vs oxygen

• Population of predators and prey

• The photosynthesis in plants vs CO2 level

• Being reprimanded for coming to work late

• Economic: supply and demand law

• Several examples in mechanical …
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The photonic chip as a system: the control layer

on chip light 
monitor

actuation 
command

working point
estimation

Sensors

Actuators

Supervisory
Inputs

Control & 
Calibration

Electronics and 

software

MOTIVATIONS

Fabrication tolerances

Uncertainties and variability

Stochastic nature of parameters 

Temperature dependence

Operational conditions

Nonlinearities

Programmable photonics

Adaptive photonics
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K. Padmaraju, et al, JLT 32(3), 2014

Dithering, analog
Columbia Univ. 2014

X. Zheng, Opt. Express, 22(10) 2014

Bang-bang, digital 15 bits
Oracle 2014

K. Yu, et al., JSSC, 51(09) 2016

Tuning (peak search, analog) + locking 
(bang-bang, digital)  
HP 2016

9

Integrating photonics with silicon nanoelectronics
Nature, 19 April 2018

The control layer from literature (incomplete!)

9

TeraPHY die 

TeraPHY: A High-density
Electronic-Photonic Chiplet, 
OFC 2019 - Ayar Labs, Inc. 
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The ingredients
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Light monitors: Ge, InP, hybrid, monolithic... CLIPP !

III-V  compoundsGe on Silicon
On-chip photodetection is a mature technology but...  power hungry and photon hungry

Silicon itself can be used for light detection in the near-IR

Surface and Defect state absorption PDs 
Photogeneration due to natural and/or induced (ion implantation) defect states at 
the edges of the waveguide core (symmetry breaking & dangling bonds)

H. Chen et al., APL 95, 171111 (2009) M.W. Geis et al., PTL 19(3), 2007

H. Jayatilleka et al., 6 (1) OPTICA, 2019
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A transparent detector: the CLIPP concept
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SSA process 

A Si waveguide cross section
L CLIPP length
DNs surface free-carrier density
µs carrier mobility

Light dependent conductance variation
Free carriers 
generated on the 
surface by SSA

Carrier mobility is typically 
lower on the surface 
compared to the bulk

Si conductivity change 
induced by light

ContacLess Integrated Photonic Probe lockin detection of photoconductance
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F. Morichetti et al., JSTQE 20(4), 2014 

Stalking light, Nature Photonics Highlights 2014
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A transparent detector: the CLIPP concept

Si
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SiO2
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Metal

Si
100 nm 

longitudinal view

Light in DG Light out

metal metal

CC C

ContacLess Integrated Photonic Probe (CLIPP) 

Measuring the SSA 
induced waveguide 
conductance change DG
through a lock-in  
detection circuit

Contactless capacitive 
access to the waveguide

S. Grillanda, Nature Communications 6, 8182 (Sept. 2015)
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Performance match monitoring requirements:
q Compact size: L down to 25 μm
q Sensitivity down to -40 dBm
q 40 dB dynamic range
q Speed down to 20 µs
q Both TE/TM polarizations
q Arbitrary waveguide geometry (single-mode/multimode)
q No loss, no backreflection, no amplitude/phase perturbation, 

no need for doping

CLIPP performance

0dBm

-35 dBm

SiO2

SiO2 Si
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The control layer: Actuators
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Integrated optical actuators
Phase / Amplitude

Analog / Digital

Reversible (tuning, switch) / Permanent (trimming, programming)

Fast (MHz for tuning/stabilization) / Slow (reconfiguration)

Compact (1-100 µm)

Low Power (< mW) / Energy consumption (< pJ/bit)

18

n pD =

Phase actuators

ON/OFF  à
(large Dn, moderate Dk)

250n
k

D
Þ ³

DS. Zanotto, Laser & Photonics Reviews 9 (6), 2015
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Integrated optical actuators
Thermal actuators

W.M. Green et al., Opt. Express 15 (2007)

p-n junctions
Carrier injection/depletion

19

C. Rãos et al, Nature Photonics 6 (2015)
A. Joushaghani et al, APL, 102, 061101 (2013)

Phase-change
materials

C. Hoessbacher et al., Optica 1 (2014)

Plasmonic memristor

R. Amin et al., arxiv (2018)

MEMS based switches

S. Han et al., Berkeley, (2015)

Graphene, MoTe2, ITO modulators
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Integrated optical actuators
Thermal actuators p-n junctions

Carrier injection/depletion

20

Plasmonic memristor Graphene, MoTe2, ITO modulators

MEMS based switches

Ya
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01

7

waveguide

Thermal field induced 
by heater

Silicon substrate

cladding

heater

N. Farmakidis et al. 
Sci Adv 2019; 5

A. Fiore, TU/e
Phase-change
materials
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Silicon OxyCarbide with ultra high TOC

SiOC as enabling material for efficient heaters
… 10X higher than TOC of SiO2 and Si3N4

SiOC Mach-Zehnder

F. A. Memon et al., ACS Photonics, 2018

SiOC (n=2.2) is a material with low Eg

yet transparent in the near IR

TOC
2.5 x 10-4 °C-1

SiOC

dn
dT

∝
1
Eg

SiOC Core

SiO2 Clad
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Electronics at service of photonics

FPGA
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Feedback and control – Reflex Arc
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Feedback and control by dithering – Reflex Arc

• Dithering tecnique to extract partial derivatives (2 frequencies)

• Integral controller locking heaters to the desired working point

• Control loop bandwidth affects speed and accuracy of locking

Courtesy of Prof. M. Sampietro (PoliMi)

25

STmicroelectronics BCD8sp MPW

OUT1
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Control many degrees-of-freedom (DOFs) using a 
single monitoring point

Handling multiple degrees of freedom

J. Fisher, et al. JLT 33(10), 2015

Several DOFs simultaneously dithered at orthogonal 
frequencies generated from a discrete-multi-tone generator 
(DMT)

Detector

Initial
operating

point

Multi tone
dithering

+
output 

acquisition

Gradient
and 

Hessian
estimation

Direction and
step size

estimation

Actuators
voltage
change

Stop
criterion

no

yes

• Extract N derivatives vs dithering tones (gradient, 
Hessian matrix, …)

• Estimation of descent direction & step size
(gradient or Newton method)

• Step size refinement (e.g. Back-Trace-Line-Search)
• Bang-Bang techniques

f/p

q/ p
Popt

drop(f,q)

 

 

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

0.2
0.4
0.6
0.8
1
1.2
1.4

CLIPP DRIVING and TIA

HEATER DRIVING
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FPGA

Courtesy of Prof. M. Sampietro (PoliMi)
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Stage A Stage B Stage C

Input 
channel

Output 
channel

Optical 
crosstalk

8x8 Si photonic switch matrix

Feedback control of thermal xtalk
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Stage A Stage B Stage C
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Feedback control of thermal xtalk
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eigensolutions of the thermally-coupled system

F. Morichetti et al., JLT 1/2019 

Handling thermal cross talk
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• TED technique can be adopted to 
cancel phase coupling in arbitrary
PICs and arbitrary algorithms for tuning, 
locking, optimizing, switching…

• Circuit modifications are achieved in 
direction of !"# to minimize the error 
function

• (At each iteration) desired phase 
changes in each phase shifters are 
calculated by $% = '$( and applied via 
thermal actuators

• T is the phase coupling matrix

Use of the TED
technique

Canceling thermal cross-talk effects in photonic integrated circuits
M. Milanizadeh et al., JLT 37 (4), 2019

) =
1
$µ
,

-
1
.
/
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1
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1

Estimation of Cross talk 
matrix T

• Optically measured (exact)

• Electrical measured (symmetrical)

• Estimated (simulations)
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3rd order coupled MRR based filter (SiON platform) 

Perturbed filter (initial)

±6.5 GHz random perturbation

In

Through
Add

Drop

TED-assisted automated tuning

Tuned filter

Bandwidth 6.5 GHz 
FSR 50GHz 

Input signal
5 Gbit/s OOK channel

TED demo on tuning of coupled MRR in SiON

TED always guarantees convergence 
of the tuning algorithm

Xt
al

k
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]
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]

No TED (individual tuning)

TED
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Signal assisted tuning

CW

34

Filter
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Signal assisted tuning

100 Gbit/s
QPSK Module

10 Gbit/s
OOK Module

CW

35

Filter
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Pilot tones for device control (WDM regime)

36
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A multiphysics world !!

RF connections, reflections and crosstalk

Thermal management

Stress and strain

Time varying phenomena

…..
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Let’s use the ingredients !
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Reconfigurable hitless filters
Filter design nominal values:
● 1 THz (8 nm) of Free Spectral Range (FSR)
● 40 GHz of 3 dB bandwidth
● 20 dB in band isolation

Mach-Zehnder Modulators (MZM) 
in the add port to apply optical label

CLIPP detector at the Drop port
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- Exploit TED to actuate MRRs 
- Light monitor at the Drop port (CLIPP) 
- Marking the added channel with a label
- Added channel is modulated

Reconfigurable hitless filters

Look-up Table Fine tuning

Add-
Through

Add-
Through
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Automatic tuning of the transfer function
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Automatic tuning and locking algorithm:

1. Disconnect filter from the bus and add/drop

2. Coarse tune of rings with a Look Up Table

3. Connect filter to bus and  add/drop

4. Fine tuning and automatic locking of the filter

45

disable

Coarse tuning

enable
l

filter tuning

1555.34 1559.381557.363

Reconfigurable hitless filters
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Look Up Table automatic generation

Wavelength [nm] Ring Top [V] Ring Middle [V] Ring Bottom [V] MZ Connected [V] MZ Disconnected [V]
1559,25 3,071 2,986 2,752 3,245 1,436

Voltages of heaters for one channel of LUT

Drop & Through ports, 10 Gb/s, 100 GHz spaced
Drop & Through ports, 50 Gb/s QPSK, 50 GHz spaced
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CMOS
ASIC

Photonic 
chip

Unscrambling light (with reflex arc control and pilot tones)
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A. Annoni et al., Light: S&A 6, e17110 (2017)

Transparent CLIPP 
monitors

Thermal phase
shifter

Mixed 
modes

S11
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S13

S21

S22

S31

Tunable 
beam splitter

Sorted modes
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Camera

Mesh configured to maximize power at detector

Initial Pattern

30
0u

m

Beam size at the 
phase mask 1.4 mm

Phase front reconstruction

light in

Perturbed Pattern
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Camera

Mesh configured to maximize power at detector

Now Mesh is reconfigured compensating for phase mask effects...

Mesh realigns 
compensating for

phase-front perturbation 
Initial Pattern Perturbed Pattern Compensated Pattern

30
0u

m

Beam size at the 
phase mask 1.4 mm

Phase front reconstruction

light in
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Take home messages

Transparent monitors, efficient actuators

Electronics: Brain vs Reflex Arc, digital vs analog

Strategy: TED, Pilot tones, tuning assisted by signals

Every device has its own control procedure
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