Materials Science View of Grinding and Polishing of Laser Glass Optics

OSA Optical Materials Studies Webinar

December 2, 2016
Tayyab Suratwala suratwala1@Ilnl.gov Optics \& Materials Science \& Technology Lawrence Livermore National Laboratory

LLE Lawrence Livermore
National Laboratory

Useful Reading Material

H. Karow, "Fabrication Methods of Precision Optics" John Wiley \& Sons (1993)
N. Brown, "Optical Fabrication" LLNL Report MISC4476 (August 1989)
L. Cook, "Chemical Processes in Glass Polishing" Journal of NonCrystalline Solids 120 (1990) 152-171
T. Izumatani, "Optical Glass" (Kyoritsu Shuppan Company, Tokyo 1984; Lawrence Livermore National Laboratory (USA); American Institute of Physics (New York 1986)
D. Anderson, J. Burge, "The Handbook of Optical Engineering: Chapter 28: Optical Fabrication"
D. Malacara, "Optical Shot Testing" Wiley-Interscience (2007)

Other references quoted through the presentation

What is optical fabrication?

The objective of optical fabrication is to manufacture an optical element (e.g., lense, flat, mirror, active optic) which is often made of glass

Key Requirements

1) Surface Figure (affects wavefront)
2) Surface Quality (affects scatter and laser damage resistance)
a) Roughness
b) Sub-surface damage (scratch/dig)

NIF contains >7000 large (0.5 m scale), high precision optics

Laser Phosphate Glass

Fused Silica

Borosilicate Glass

1) Stringent optical requirements 2) High laser damage resistance Manufacturability to 0.5 m size scale

An example of specifying the requirements of an optic

High Level Requirements ${ }^{1}$

Surface Peak-to-Valley Gradient	$211 \mathrm{~nm}(\lambda / 3)$
PSD1	$<7 \mathrm{~nm} / \mathrm{cm}$
PSD2	1.8 nm
Roughness	$4-1 \mathrm{~nm}$
Scratch/Dig ${ }^{2}$	$20 / 10$
Bulk	
Homogeniety	$<5 \mathrm{ppm}$
Inclusions(>5um)	0
Lenslets	0

${ }^{1}$ For typical 3ω NIF optics; ${ }^{2}$ Post-etch with number of scratches (width>8 $\boldsymbol{\mu}$ m) <12-50
Lawrence Livermore National Laboratory
NAS

Typical steps of an optical fabrication process

Examples of grinding techniques

Examples of polishing techniques

The complexities of polishing has made is difficult to scientifically design, optimize a process for a given material

Lawrence Livermore National Laboratory
NDSA

There are numerous mechanical, structural and chemical effects on the glass surface during grinding and polishing

There are numerous mechanical, structural and chemical effects on the glass surface during grinding and polishing

There are numerous mechanical, structural and chemical effects on the glass surface during grinding and polishing

The load/particle determines the removal mechanism

Brittle Removal Grinding or scratching

$$
P_{\text {crit }}>0.1 \mathrm{~N}
$$

- Material within lateral cracks are removed (grinding process)
- Leads to scratches

Plastic Removal Ductile Polishing

$$
\mathrm{P}_{\text {crit }}>5 \times 10^{-5} \mathrm{~N}
$$

- Portion of deformed material removed
- Leads to plastic scratches or sleeks
- Determined removal amount ~1 nm

Chemical removal Chemical Polishing

$$
\mathrm{P}_{\text {crit }}<5 \times 10^{-5} \mathrm{~N}
$$

- Removal at the molecular level ($\left.\mathrm{Si}(\mathrm{OH})_{4}\right)$ by condensation \& hydrolysis
- Creates smooth surface
- Determined removal amount ~0.04 nm

Approach for the management of sub-surface fractures (i.e. scratches/digs)

Schematic of material removal during various steps of the grinding/polishing process illustrating surface fracture removal

- Removal at each step is aimed at removal of deepest damage decreasing it to the level of deepest damage expected at current step (most economical design)
- Note each subsequent step has much lower removal rate
- This approach has been generally followed for hundreds of years
*Preston (1921), Aleinikov (1957), Edwards \& Hed (1987), Brown (1980), Lambropoulos (1996)

There are five major areas of effort that have aided in managing sub-surface fractures

GRINDING

1. Developed fracture mechanics understanding of sub-surface fracture distributions

POLISHING

2. Identified/characterized behavior of rogue particles causing sub-surface fractures

CHEMICAL ETCHING

3. Established techniques using etching to reveal and remove subsurface fractures

SCRATCH FORENSICS

4. Developed quantitative rules for post-diagnosis of cause of surface fractures

LASER DAMAGE

5. Showed link between subsurface fracture removal \& improved laser resistance

There are five major areas of effort that have aided in managing sub-surface fractures

There are three basic types of cracks created by static brittle indentation

Initiation

$$
P_{c}=A r
$$

$$
c_{h}=\left(\frac{\chi_{h} P}{K_{\text {Ic }}}\right)^{2 / 3}
$$

Leads to subsurface damage

$$
P_{c}=\alpha_{r} \frac{K_{I c}^{4}}{H^{3}}
$$

$$
c_{r}=\left(\frac{\chi_{r} P}{K_{I c}}\right)^{2 / 3}
$$

Leads to subsurface damage

Lateral Cracks² (sharp)

$$
P_{c}=P_{c \ell}
$$

$b_{e}=\frac{\chi_{t}\left(\frac{E}{H}\right)^{3 / 5} P^{5 / 8}}{K_{I c}^{1 / 2} H^{1 / 8}} c_{t}=\frac{\chi_{t 2}\left(\frac{E}{H}\right)^{2 / 5} P^{1 / 2}}{H^{1 / 2}}$

Leads to material removal

${ }^{1}$ B. Lawn, "Fracture of Brittle Materials" (1993)
${ }^{2}$ I. Hutchings "Tribology:Friction and Wear of Engineering Materials" (1992)

The fracture initiation and growth constants need to be known to quantitatively use these relationships

Initiation

$$
P_{c}=(A) r
$$

$$
c_{h}=\left(\frac{\chi_{h} p}{K_{\text {Ic }}}\right)^{2 / 3}
$$

Leads to subsurface damage

$$
P_{c}=\alpha_{,} \frac{K_{I c}^{4}}{H^{3}}
$$

$$
c_{r}=\left(\frac{\chi_{f} p}{R_{I c}}\right)^{2 / 3}
$$

Leads to subsurface damage

Lateral Cracks² (sharp)

$$
P_{c}=P_{c}
$$

$$
b_{e}=\chi_{K_{l c}^{1 / 2} H^{1 / 8}}^{\left(\frac{E}{H}\right)^{3 / 5} P^{5 / 8}} c_{t}=\frac{x_{\mathrm{l}}\left(\frac{E}{H}\right)^{2 / 5} P^{1 / 2}}{H^{1 / 2}}
$$

Leads to material removal

${ }^{1}$ B. Lawn, "Fracture of Brittle Materials" (1993)
${ }^{2}$ I. Hutchings "Tribology:Friction and Wear of Engineering Materials" (1992)

Friction strongly influences fracture initiation for a sliding particle indentation (i.e. scratching)

Static Sphere ${ }^{1}$

Initiation $\boldsymbol{P}_{\boldsymbol{c}}=\boldsymbol{A r}$
Growth $P=\frac{K_{I c}}{\chi_{h}} c^{3 / 2}$

Sliding Sphere ${ }^{1,2}$

$$
P=\frac{K_{I c}}{\chi_{h}\left(1+\mu^{2}\right)^{2}} c^{3 / 2}
$$

${ }^{1}$ Lawn, Fracture of Brittle Solids (1993)
${ }^{2}$ Lawn, Indentation Fracture: Principles and Applications (1975)

The effect of load on the fracture behavior of scratches has been measured

Schematic description of fractures

 associated with a scratch

- At low loads (P<0.1 N), no cracking is observed just a ductile track
- At intermediate loads ($0.1 \mathrm{~N}<\mathrm{P}<5 \mathrm{~N}$), well defined median and lateral cracks form
- At high loads (P>5N), the plastically observed track appears to shatter and the median and lateral crack are not as extending as in the higher end of the intermediate loads

Refs: Review: K. Li, Journal of Materials Processing Technology 57 (1996) 206 Review:M. Swain, Proc. R. Soc. London A, 366 (1979) 575

A wedge or taper polishing* technique was developed to directly measure the SSD distribution

*J. Menapace, SPIE 2005, Boulder Damage Symposium; Based on tapering technique used by Hed \& Edwards (1987)

The SSD depth distribution has been measured for a series of standard grinding processes

Measured Crack Depth Distribution

Coarse Generator Grind (120 grit) (Sample B)

IVIIcroscope images of the fractures show a unique size character for each grinding step

150 Grit (100 $\mu \mathrm{m}$)

$9 \mu \mathrm{~m}$ loose abrasive

IVIIcroscope images of the fractures show a unique size character for each grinding step

$15 \mu \mathrm{~m}$ fixed abrasive
$<L>=4.5 \mu \mathrm{~m}$

$9 \mu \mathrm{~m}$ loose abrasive
$<L>=1.9-\mu \mathrm{m}$

The characteristic length is typically $\mathbf{1 5 - 3 0 \%}$ of the abrasive particle size during grinding

A brittle fracture model has been successfully used to explain the observed distribution of crack depth and lengths

The load on particle is proportional to its vertical dimension

We recommend using the '90' rule for material removal ($c_{90}=0.9<L>$) for isolated SSD observed on polished parts

Measured mean crack length vs SSD depth

$$
c_{\max }=2.8\langle L\rangle
$$

Probability of finding a crack of depth c for a given crack length

$$
c_{90}=0.9\langle L\rangle
$$

The addition of a small amount of $15 \mu \mathrm{~m}$ particles in a $9 \mu \mathrm{~m}$ slurry results in a significant increase in SSD

Particle size distributions of the alumina particles used

Crack depth distributions:
Loose abrasive grinding with addition of rogue particles

The loaded particles are the largest particles in the abrasive particle distribution

There are five major areas of effort that have aided in managing sub-surface fractures

CHEMICAL ETCHING

3. Established techniques using etching to reveal and remove subsurface fractures

Rogue particles of diamond were added to a ceria slurry during polishing at various sizes \& concentrations

POLISHING

Rogue particles can cause multiple types of scratches

Mixed
Brittle fracture / Plastic Abrasive Wear

Brittle
 Fracture

Trailing indent fracture	Trailing indent + lateral fracture

The scratch length increases with rogue particle size

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
\begin{aligned}
& L_{\text {scratch }}=8.9 \frac{\nu_{\text {ave }} \eta R^{2}}{P} \quad \begin{array}{l}
t=t_{0} \\
P_{1}=\text { Load on rogue particle }
\end{array} \\
& \text { Viscoelastic Lap }
\end{aligned}
$$

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
L_{\text {scratch }}=8.9 \frac{\nu_{\text {ave }} \eta R^{2}}{P}
$$

$$
\begin{aligned}
& t=t_{1} \\
& P_{1}=\text { Load on rogue particle }
\end{aligned}
$$

Viscoelastic Lap

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
L_{\text {scratch }}=8.9 \frac{\nu_{\text {ave }} \eta R^{2}}{P}
$$

$$
\begin{aligned}
& t=t_{2} \\
& P_{1}=\text { Load on rogue particle }
\end{aligned}
$$

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
L_{\text {scratch }}=8.9 \frac{v_{\text {ave }} \eta R^{2}}{P}
$$

$$
\begin{aligned}
& t=t_{3} \\
& P_{1}=\text { Load on rogue particle }
\end{aligned}
$$

Viscoelastic Lap

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
L_{\text {scratch }}=8.9 \frac{v_{\text {ave }} \eta R^{2}}{P}
$$

$$
\begin{aligned}
& t=t_{4} \\
& P_{1}=\text { Load on rogue particle }
\end{aligned}
$$

$\xrightarrow{\text { Optic movement }}$

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The observed scratch lengths can be explained by the viscoelastic penetration of a rogue particle

$$
L_{\text {scratch }}=8.9 \frac{\nu_{\text {ave }} \eta R^{2}}{P}
$$

$$
\begin{aligned}
& t=t_{5} \\
& P=\text { Load on all particles }
\end{aligned}
$$

$\xrightarrow{\text { Optic movement }}$

This behavior has been modeled using hard sphere penetration into a linear viscoelastic lap at large penetration

The scratch length correlates with viscoelastic model wrt rogue particle size, pressure, lap viscosity, and lap temperature

Scratch length as a fn of various process parameters

There are five major areas of effort that have aided in managing sub-surface fractures

POLISHING
2. Identified/characterized
behavior of rogue particles
causing sub-surface fractures

CHEMICAL ETCHING

3. Established techniques using etching to reveal and remove subsurface fractures

HF: $\mathrm{NH}_{4} \mathrm{~F}$ etching of fused silica glass allows for removing the Bielby layer and visually observing surface cracks

Cross section view of cracks before etching

Cross section view of cracks after etching

HF Etching exposes sub-surface fractures allowing detection

- Polished Optic ($14 \mathrm{~cm} \times 14 \mathrm{~cm}$) viewed off axis by side lighting

Preston reported this behavior in 1921

ETCHING

HF etching can be used after grinding to remove subsurface fracture because it annihilates neighboring cracks

Etching ground surface

Simple Geometric Model

There are five major areas of effort that have aided in managing sub-surface fractures

Our studies have provided new rules that Opticians use to diagnose the cause of or to mitigate scratches

Property of scratch	What can it tell you?	Rule / Exam	
1. Scratch width or trailing indent length (L)	- Size of rogue particle (d) - Size distribution of Rogue Particles - Process step - Depth of fracture (c_{90} or $\mathrm{c}_{\text {max }}$)	For grinding	
		$0.15 d \leq L \leq 0.3 d$	
		For polishing	
		$0.3 d \leq L \leq 0.5 d$	
		Sample	<L>
2. Number density 3. Scratch length ($L_{\text {scratch }}$)	- Rogue particle concentration - Lap properties and rogue particle size	A: Sandblast	27.1
		B: 120 grit	28.3 ur
		C: 320 grit	14.9 m
4. Scratch type (plastic, brittle, mixed)	- Load during fracture - Sharpness of particle	D: 15 um loose	4.6
		E: 15 um fixed	4.5 um
		F: 9 um losse	1.9
5. Orientation and pattern of trailing indent	- Particle movement direction - Particle rotation	G:7 7 mfixed	8.4 um
		$c_{90}=0.9<L>\quad c_{\text {max }}=2.8<L>$	
6. Curvature or scratch pattern	- Stick slip behavior - Pathway of indenting particle - Shape of tool	$P \approx 0.001-0.1 \mathrm{~N}$ Plastic only	
		$\begin{array}{ll}P \approx 0.1-5 N & \text { Plastic \& Brittle } \\ P>5 N & \text { Plastic \& rubble }\end{array}$	
	- Handling vs polishing	$L_{\text {scratch }}=8.9 \frac{v_{\text {ave }} \eta R^{2}}{P}$	
7. Location on optic	- Material removal and surface figure		P

SCRATCH FORENSICS
 Example of scratch forensics

-2

Example of scratch forensics

Trailing Indent length: $\mathrm{L}=1.9 \mu \mathrm{~m}$
Rogue Particle ~ 3.8 - $5.7 \mu \mathrm{~m}$

$$
C_{90}=1.8 \mu \mathrm{~m}
$$

Scratch Length ~130 $\mu \mathrm{m}$
Scratch time $\sim 0.16 \mathrm{msec}$

Strategy for reducing the scratch density on optical surfaces

1. Measure the SSD at each step
2. Define proper removal rate at each step such that all the SSD from previous step is removed
3. Can use etching as a means to remove SSD just after grinding
4. Ensure handling and cleaning at each step does not let rogue particles make contact with surface
5. Remove all rogue particles in polishers; Use scratch forensics to determine source
6. Use etched scratch dig inspections between steps and at end of process

Strategy for reducing the scratch density on optical surfaces

1. Measure the SSD at each step
2. Define proper removal rate at each step such that all the SSD from previous step is removed
3. Can use etching as a means to remove SSD just after grinding
4. Ensure handling and cleaning at each step does not let rogue particles make contact with surface

5. Remove all rogue particles in polishers; Use scratch forensics to determine source
6. Use etched scratch dig inspections between steps and at end of process

Strategy for reducing the scratch density on optical surfaces

1. Measure the SSD at each step
2. Define proper removal rate at each step such that all the SSD from previous step is removed
3. Can use etching as a means to remove SSD just after grinding
4. Ensure handling and cleaning at each step does not let rogue particles make contact with surface
5. Remove all rogue particles in polishers; Use scratch forensics to determine source
6. Use etched scratch dig inspections between steps and at end of process

Strategy for reducing the scratch density on optical surfaces

1. Measure the SSD at each step
2. Define proper removal rate at each step such that all the SSD from previous step is removed
3. Can use etching as a means to remove SSD just after grinding
4. Ensure handling and cleaning at each step does not let rogue particles make contact with surface
5. Remove all rogue particles in polishers; Use scratch forensics to determine source
6. Use etched scratch dig inspections between steps and at end of process

Crack depth distributions:
Loose abrasive grinding with addition of rogue particles

Rogue particle sources

1) In slurry from foreign particle or agglomerates
2) Dried slurry on components falling in
3) Contamination from polisher exterior

Strategy for reducing the scratch density on optical surfaces

1. Measure the SSD at each step
2. Define proper removal rate at each step such that all the SSD from previous step is removed
3. Can use etching as a means to remove SSD just after grinding
4. Ensure handling and cleaning at each step does not let rogue particles make contact with surface
5. Remove all rogue particles in polishers; Use scratch forensics to determine source
6. Use etched scratch dig inspections between steps and at end of process

Etching provides a means of revealing subsurface damage masked by hydrated silica

There are five major areas of effort that have aided in managing sub-surface fractures

LASER DAMAGE

SSD-free test optics have been fabricated such it does not laser damage, supporting the "absorber-in-a-crack" theory

Edge-lit image of an polished 14 cm optic

Edge-lit image of same optic

Laser testing on a $14 \mathrm{~cm} \times 14 \mathrm{~cm}$ test optic to $14{\mathrm{~J} / \mathrm{cm}^{2}}^{2} 351 \mathrm{~nm}, 3 \mathrm{~ns}$ equiv) resulted in the elimination of growing laser initiation site upon SSD removal

AMP process significantly reduces laser damage initiation per unit scratch length

The complexities of polishing has made is difficult to scientifically design, optimize a process for a given material

Phenomena affecting Surface Quality

NDS:

The surface figure of an optic is typically measured by interferometry

Measured Surface Figure

Material removal on a workpiece is governed by a large number of phenomena

Material removal on a workpiece is governed by a large number of phenomena

$$
\frac{d h}{d t}(x, y, t)=\underbrace{k_{p}} \underbrace{\mu(x, y, t)} \underbrace{v_{r}(x, y, t)} \underbrace{\sigma(x, y, z, t)}
$$

 J. Am. Ceram. Soc., 93 [5] 1326-1340 (2010)

The optic/lap can have different modes of contact which strongly influences the amount of material removal

J. Lai, Thesis (2001);
J. Am. Ceram. Soc., 93 [5] 1326-1340 (2010)

- Friction $\mu \sim 0.01$ to 0.1
- Transition mode during pressure or velocity changes
- Contact is made between lap asperities and optic

Hydroplaning Mode

Friction $\mu \sim 0.001$ to 0.01 (due to shear of viscous fluid)

- Optic glides on fluid film without directly touching pad
- Low pressure/high velocity
- Pressure build-ups in fluid to support normal load of optic
- Pressure gradient is sensitive to wedge angle

A geometric model is used to estimate the figure during conventional grinding/polishing

Schematic of geometric model

Viscoelastic

For a translating workpiece on a viscoelastic lap, stress is highest at leading edge and lowest at end

Schematic of moving workpiece on a viscoelastic lap

Effect of moment on workpiece tilt

Calculated instantaneous stress distribution is qualitatively similar to measured data

Leading edge

Calculated instantaneous Stress profile

Measured removal on optic when it is not rotated (Exp B)

High removal was observed at leading edge consistent with viscoelastic mechanism for causing pressure distribution

The pressure distribution across the workpiece can be predicted using the rigid punch indentation model for contact mode

Rigid Flat Punch Model
Calculated pressure/load distribution

Рарр= 25 N; f=0.1; v=0.1

Our code SurF incorporates these phenomena \& does a good job at predicting surface

J. Am. Ceram. Soc., 93 [5] 1326-1340 (2010)

Workpiece polishing can cause non-uniform wear of the lap

Shape of lap after polishing workpiece

T. Suratwala et. al., IJAGS 3(1) 14-28 (2012).

L Lawrence Livermore National Laboratory
$N A^{\prime} S$

A novel septum has been designed to counteract non-uniform wear on the pad

Pad wear vs lap radius due to workpiece and engineered septum

Determined shape of Septum

T. Suratwala et. al., IJAGS 3(1) 14-28 (2012).

NDSA

Temperature variations across workpiece can be minimized using rotated workpiece and septum

Temperature on non-rotated workpiece

Temperature variations vs polishing configuration

Pitch (Stiff) Button Blocking (PBB) and Foam (Compliant) Button Blocking (FBB) allows different workpiece response during polishing for High AR workpieces

Pitch Button Blocking (PBB)

- Workpiece does not conform to lap upon loading
- Allows for surface figure to match lap figure

Foam Button Blocking (FBB)

- Workpiece conforms to lap deform upon loading
- Allows for uniform removal on workpiece

Without stiff blocking, thin workpiece deflects during polishing

Thick Workpiece ($26 \times 26 \times 4 \mathrm{~cm}^{3}$) FBB (Exp 1034)

Thin Workpiece ($26 \times 26 \times 0.8 \mathrm{~cm}^{3}$) FBB (E1019)

$$
\mathrm{PV}_{\mathrm{q}}=0.42 \mathrm{um}
$$

$$
\mathrm{PV}_{\mathrm{q}}=3.8 \mathrm{um}
$$

Pitch button blocking (PBB) technique prevents workpiece from bending during polishing

265 mm (side) x 8 mm (thick) Fused Silica PBB

Model vs Experiment:
$\Delta \mathrm{PV}$ as fn of pitch button area fraction

Fine scale radial material non-uniformity is caused by local islands of slurry on the pad

Fine scale radial material non-uniformity is caused by local islands of slurry on the pad

Optical micrograph of grooves observed on non-rotated workpiece

Radial stroke motion dramatically reduces this non-uniformity

Residual grinding stress causes a high aspect ratio workpiece to bend

Surface Figure of S2 (After Grinding/Etching*)

$$
P V_{q}=-1.29 \mu \mathrm{~m}
$$

$$
P V_{q}=3.65 \mu \mathrm{~m}
$$

$$
P V_{q}=-1.16 \mu \mathrm{~m}
$$

Chemical etching can effectively remove the residual stress and any complications to workpiece-lap mismatch

Convergent Polishing machine (CISR2) is ready for process trials for reducing GDS finishing cost

Material removal on a workpiece is governed by a large number of phenomena

$$
\frac{d h}{d t}(x, y, t)=\underbrace{k_{p}} \underbrace{\mu(x, y, t)} \underbrace{v_{r}(x, y, t)} \underbrace{\sigma(x, y, z, t)}
$$

We developed a polishing process which removed all spatial material removal nonuniformities except for Workpiece Shape

T. Suratwala et. al., IJAGS 3(1) 14-28 (2012)
M. Feit et. al., Appl. Opt. 51(35), 8350-8359 (2012)
R. Dylla-Spears et. al., Colloids and Surfaces A (2014)

Convergent Polishing works on the principle of time varying pressure distribution due to workpiece-lap mismatch of workpiece shape

Convergent Polishing Concept

- Material removal non-uniformity is due only to workpiece-lap mismatch (i.e. gap) due to workpiece shape
- Higher pressures where gap is smallest, leading to greater removal rate
- Removal changes gap, reducing pressure
- Convergence reached when pressure is uniform (workpiece \& lap will have same shape)

A novel septum has been designed to counteract non-uniform wear on the pad

Pad wear vs lap radius due to workpiece and engineered septum

Determined shape of Septum

Convergent Polishing converges workpiece (regardless of its initial shape) to final shape in a single iteration without process changes

Convergent Polishing can and has been applied to numerous optic shapes, materials \& sizes

Symmetric Asphere

Shape Round, square, rectangular

$$
\text { Sizes } \quad 10 \mathrm{~cm} \rightarrow 26 \mathrm{~cm} \rightarrow 43 \mathrm{~cm}
$$

Aspect ratios (AR) $10 \mathrm{~cm}>50$ AR with PBB/EBB, $26.5 \mathrm{~cm}>50$ AR with PBB/EBB
Materials Fused silica, Phosphate, Borosilicate
Stability $\quad \lambda / 2$ for $100+$ Workpieces (>800 hrs)

The complexities of polishing has made is difficult to scientifically design, optimize a process for a given material

Phenomena affecting Surface Quality

Phenomena affecting Surface Figure

$N_{\Delta} \mathbf{S N}^{2}$

Schematic model of the parameters that affect roughness during polishing

Polishing was conducted using the Convergent Polishing Method (ceria or silica slurry on various glasses using a polyurathane pad)

SIMS measurements show Ce penetration into polished surface is not due to diffusion \& K penetration is consistent with diffusion

[Ce] profile on polished fused silica surface as fn of polishing velocity

[K] profile on polished fused silica surface as fn of polishing velocity

SIMS (note Si $\mathbf{2 \times 1 0 ^ { 2 2 }}$ atom $/ \mathrm{cm}^{3}$)

[Ce] ${ }_{s}$ increases with polishing removal rate \& is weakly dependent on other polishing parameters

[Ce] of polished surface layer for variety of polishing conditions

T. Suratwala et. al., J. Am. Cer. Soc 98(8) (2015) 2396

Correlation between $[\mathrm{Ce}]_{s}$ and removal rate (dh/dt)

The penetration of Ce into silica surface during polishing is proposed to be a competition of hydrolysis reactions

Condensation

Mechanism

1) Removal rate increases
2) Interface temperature increases
3) Arrhenius increase to r
4) Greater Ce surface deposition

Silica Hydrolysis
三Si-O-Si-O-Ce-O-Ce $\equiv+\mathrm{H}_{2} \mathrm{O} \rightarrow$ ISi-OH $+\mathrm{HO}-\mathrm{Si}-\mathrm{O}-\mathrm{Ce}-\mathrm{O}-\mathrm{Ce} \equiv$
Ceria Hydrolysis
$\equiv \mathrm{Si}-\mathrm{O}-\mathrm{Si}-\mathrm{O}-\mathrm{Ce}-\mathrm{O}-\mathrm{Ce} \equiv+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Si-O-Si-O-Ce-OH $+\mathrm{HO}-\mathrm{Ce} \equiv$
r =Ceria Hydrolysis rate/ Silica Hydrolysis rate

K continues to diffuse into the workpiece even after polishing

Proposed 2-step diffusion model

Step 1: During polishing, K diffuses into surface via moving boundary diffusion

$$
C(x)=C_{s} \exp \left(-\frac{\frac{d h}{d t} x}{D}\right)
$$

Step 2: After polishing, K continues to diffuse into fused silica surface (has initial condition from step 1 and no moving boundary)

$$
\frac{d}{d x}\left(D \frac{d C}{d x}\right)=\frac{d C}{d t}
$$

Schematic Model of the parameters that affect roughness during polishing

The removal volume for a single polishing particle was determined from multi-pass nanoscratching to account densification effects

Fused silica and BK7 show little load dependence on permanent deformation; changes in Bielby layer of fused silica influences depth

AFM images of nanoscratches on different surfaces at various loads

Cross-section of nanoscratches at various loads on various substrates

A detailed description of the removal function has been determined for various glasses aiding to the prediction of roughness

Determined removal function for single particle on various glasses

- Removal occurs over two regimes during polishing (molecular and plastic)
- Fused silica and BK7 have similar removal functions
- Removal function for phosphate glass is higher
- Combining removal function with load/particle distribution allows for predicting roughness

Schematic model of the parameters that affect roughness during polishing

Slurry's PSD* strongly correlates with workpiece roughness and removal rate

Measured PSD of ceria slurries

The tail end of each slurry follows a single exponential distribution
T. Suratwala et. al., J. Am. Cer. Soc 97(1) (2014) 81

Exponent constant in PSD of slurry vs RMS roughness of polished surface

The slope of the slurry's PSD quantitatively scales with the rms roughness

Pad topography during polishing strongly influences removal rate

- Tall pad asperities (100 's $\mu \mathrm{m}$) are removed with diamond conditioning pad treatment
- Removal rate increased from $0.08 \mu \mathrm{~m} / \mathrm{hr}$ to $2.10 \mu \mathrm{~m} / \mathrm{hr} ; 26 x$ increase

EHMG (Esemble Hertzian Multi-Gap) polishing model accounts for both slurry PSD \& pad topology to determine RR and roughness

- Key Inputs: Slurry PSD \& Pad Topology
- Using pad height histograms:
- Pad asperities compress leading to single value gap of pad $\left(g_{p}\right)$ based on load balance
- Fraction of pad area making contact is calculated
- Each asperity compresses by height ($\mathbf{h}_{\mathbf{i}}$) resulting in stress (σ_{i})
- Using slurry PSD at each asperity landworkpiece interface, slurry particles are loaded with a unique gap (g_{i}) following load balance
- Load/particle distribution is calculated from summing all pad asperities
T. Suratwala et. al., J. Am. Cer. Soc (2016) accepted

EHMG model compared with experiments expands our insight to the diverse factors affecting material removal rate

Measured removal rate \& EHMG model Comparison

- Widening PSD increases load/particle \& fraction of removal by plastic removal (f_{p})
- Increasing slurry conc increases active particles density ($\mathbf{N}_{\mathrm{t}} \mathrm{f}_{\mathrm{r}}$) and fraction of load carried by particle (f_{L})
- Increasing pad flatness increases fraction of pad area making contact $\left(f_{A}\right)$
- Change in glass type change removal depth by plastic removal (d_{p})

$$
\frac{d \boldsymbol{h}}{\boldsymbol{d t}} \approx \boldsymbol{N}_{\boldsymbol{t}} \boldsymbol{f}_{\mathrm{A}} \boldsymbol{f}_{L} \boldsymbol{f}_{\boldsymbol{r}} \boldsymbol{V}_{\boldsymbol{r}}\left(\boldsymbol{f}_{\boldsymbol{p}}\left\langle\boldsymbol{d}_{\boldsymbol{p}}\right\rangle\left\langle 2 a_{\boldsymbol{p}}\right\rangle+\boldsymbol{f}_{\boldsymbol{m}}\left\langle\boldsymbol{d}_{\boldsymbol{m}}\right\rangle\left\langle 2 a_{\boldsymbol{m}}\right\rangle\right)
$$

Load/particle distribution calculated using EHMG model, combined with measured removal function, gives the removal amount for each slurry particle

This can be now used to calculate both removal rate and roughness during polishing

Using the EHG model, polished surfaces using different PSDs have been simulated over multiple spatial scale lengths

Unstabilized Hastilite PO Polished Surface

Stabilized Hastilite PO Polished Surface

EHMG model also simultaneously simulates trends in observed AFM roughness over a variety of polishing parameters

Lawrence Livermore National Laboratory

Novel chemical slurry stabilization and engineered filtration has resulted in improve slurry PSD

Chemical Stabilization

Engineered Filtration

Improved Particle Size Distributions

- Surfactant dramatically reduces agglomeration without reducing removal rate
- Appropriate filtration further improves PSD

US Patent Application WO 2012129244 A1 (September 27, 2012)
R. Dylla-Spears, Colloids \& Surfaces A 447 (2014) 32
T. Suratwala, JACS 97 (2014) 81

Schematic model of the parameters that affect roughness during polishing

Probing roughness over different scale length: factors affecting u-roughness are not necessarily the same as those affecting AFM roughness

Power Spectra for various spatial band on a typical fused silica optic

Little change in AFM roughness suggests plastic removal function is unaffected by pH ; Large change in μ-roughness suggest pH is influencing slurry agglomeration at larger scale lengths

Note same behavior observed with Stabilized \& Unstabilized Hastilite for LHG-8

The uniformity of slurry on the pad is greatly improved at lower pH, likely leading to lower m-roughness

Confocal image of pad surface after polishing
$\mathrm{pH}=2$

$70 \mu \mathrm{~m}$
pH=13

$10,000 \mu \mathrm{~m}$

Slurry Height Distribution

Impact of glass products on zeta potential is very different depending on the nature of the glass product

Zeta Potential of Stabilized Hastilite PO as a fn of pH and $\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]$

Addition of glass product surrogate for phosphate glass $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$ make the zeta potential positive with little change in pH

Zeta Potential of Stabilized Hastilite
PO as a fn of pH and [Si(OH) $\left.{ }_{4}\right]$

Addition of glass product surrogate for silica glass ($\mathrm{Si}\left(\mathrm{OH}_{4}\right)$) has little impact to zeta potential

A model to determine the electrostatic double-layer interaction forces between the 3 components at the interface (as a function of pH and glass products) has been developed

Electrostatic double-layer interaction forces (two dissimilar surfaces of different radii)*

[^0]Lawrence Livermore National Laboratory

Using the IDG model, simulated μ-roughness compares well with measured data suggesting that slurry spatial distribution is an important contributor to roughness

Increase in pressure resulted in expected removal rate increase and little change in roughness as predicted by the EHMG model

These results have large practical implications since it is largely believed that low roughness surface are only achieved at low removal rates

Schematic model of the parameters that affect roughness during polishing

Strategies to reduce roughness and increase removal rate during polishing

1) Establish a narrow load/particle distribution

- Use slurry with narrow particle size distribution (especially at the tail)
- Use a compliant lap

2) Remove asperities from lap

- Example: Correctly diamond condition polyurethane pad

3) Stay within molecular removal regime (avoid plastic regime)

- i.e., increase load up until plastic regime is reached

4) Control slurry chemistry such that slurry is uniformly distributed at the interface

- e.g., pH control and glass products removal

The complexities of polishing has made is difficult to scientifically design, optimize a process for a given material

Phenomena affecting Surface Quality

Phenomena affecting Surface Figure

NAS. ${ }_{5}^{11}$

[^0]: *S. Carnie, D. Chan, J. Gunning Langmuir 10 (1994) 2993-3009

