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About us: A unique group of more than 900 researchers from 70+ countries from North
America, South America, Europe, Asia, Africa, and Oceania.

Goals:

To benefit OSA members having interest in Fiber Design, Modeling, Fabrication, and
Applications of fibers.

To Provide a platform to Fiber Community for connecting, Engaging and Exciting with others.
To Organize Webinars, Technical and Networking Events, and Special Journal Issues.

Find us:-

https://www.osa.org/FF

Join Us:
https://www.facebook.com/groups/OSAfibermodelingandfabrication/
https://www.linkedin.com/groups/8302193/
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Past Events:

1. Networking Event: Date: Tuesday, 16 Jul 2019 17:00-18:00
Location: Naupaka III, Waikoloa Beach Marriott Resort & Spa, Waikoloa Beach, Hawaii

2. Webinar 1: Everything you always wanted to know about supercontinuum modelling in
optical fibers (but were afraid to ask) Date: 26" August 2019, at Swiss time 2pm/ EDT 8am
A/Prof. Alexander Heidt, University of Bern, Switzerland.

3. Webinar 2: The development of thulium and holmium fiber sources
Date: 30t September, 2019 at 1pm (UK time)/ EDT 7am
Dr. Nikita Simakov, DSTO, Australia.

4. Webinar 3: Recent development in hollow-core optical fiber
Date: 14 November, 2019, 8 am Beijing Time
A/Prof. Y Wang, Beijing University of Technology, China.
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Events at CLEO San Jose, CLEO Pacific-

> Rim, and F1O USA !!!!

Current/Future Webinars:

Webinar 1: Integration of 2-dimensional materials in fiber optics for ultra-short pulse lasers
Date: 13t March 2020, 8 pm EDT.
Prof. Kyunghwan Oh, Yonsei University, South Korea.

Webinar 2: Novel Optical Materials for optical Fibers

Date: 24 April 2020, 11 am EDT.
Prof. John Ballato, Clemson University, USA.

Webinar 3: Mid-Infrared Supercontinuum Generation in Optical Fibers
Date: 20 May 2020, 10 am EDT.
Dr. Christian Petersen, Technical University of Denmark, Fotonik.

Webinar 4: Hybrid (M-type) fibers for dispersion management
Date: 18 September, 3 pm EDT.
Dr. Svetlana Aleshkina, Fiber Optics Research Center, Russian Academy of Sciences, Russia.
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If you are OSA member: Log-in to your OSA Account
and chose FF group in Technical Groups Category.

You can join the Facebook Group even if you are not member of
OSA:
https://www.facebook.com/groups/OS Afibermodelingandfabrication/

You can contact me if you are interested in giving a
Webinar/Talk/Panel Discussion, on deepakjain9060@gmail.com
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Mid-Infrared Supercontinuum Generation in
Optical Fibers

Dr. Christian Petersen, Technical University of Denmark

Speaker’s Short Bio: Dr. Christian Rosenberg Petersen obtained his BSc. (2011), MSc. (2013), and
PhD. (2016) degree from the Technical University of Denmark, Department of Photonics
Engineering. During and after his PhD as a postdoc, he has been working at the department in the
group of Prof. Ole Bang with a speciality in experimental mid-infrared supercontinuum generation
and applications. He is also co-founder of the Danish start-up company NORBLIS, which is a
university spin-out developing mid-infrared supercontinuum lasers and imaging systems.
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SUPERCONTINUUM

Generation of new optical
frequencies covering a wide
continuous spectral range through
_nonlinear light-matter interaction.

N
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SUPERCONTINUUM PHYSICS
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Group-velocity dispersion (GVD) is related\ a) x10' | o) _ 1
to the wavelength dependent refractive 3 | 0NN -
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For D<0 (B> 0) the chirp of SPM and GVD act\ _ s R
ogether to stretch the pulse in both time and £ gd
requency. Sucha SCisin principle fully E_ . s 8 00 &
coherent, although for high power or long a° = e 4
fiber length the coherence may degrade. o 5 1208
\k % E % ———— 1500
¢ =g TE
= %: /\\
Wavelength b T ormeee ?

ANOMALOUS DISPERSION

For D>0 (B <0) the frequency chirp from SPM
and GVD can be made to cancel out when the
dispersion is anomalous.
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SUPERCONTINUUM PHYSICS

FISSION AND DISPERSIVE WAVES

Dueto higher-order dispersion, the solitons are
unstable and therefore break up into N
fundamental solitons (fission), generating
resonant radiation in the normal dispersion
region known as dispersive waves (DW).
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SOLITON SELF-FREQUENCY SHIFTING

The generated solitons can then red-shift \
through intra-pulse Raman scattering, i.e.
soliton self-frequency shifting (SSFS). Then,
because the solitons impose a trapping
potential on the DWs, it causes the DWs to blue-
shiftin order to match the GV of the solitons.
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MODULATION INSTABILITY

Modulation instability (Ml) is the \
amplification of noise in the pulse
waveform that grow exponentially,
resulting in the break-up of the pulse into
fundamental solitons. Ml is similar to
fission, but requires longer pulsesinthe ps
and ns range because the break-up
mechanism is related to degenerate four-
wave mixing.
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History of Mid-IR Supercontinuum

Designing Optical Fibers for SCG

Pumping schemes

Applications
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HISTORY OF MID-IR SCG
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Vorume 24, NumBer 11 PHYSICAL REVIEW LETTERS 16 MarcH 1970 1970: DISCOVERY

EMISSION IN THE REGION 4000 TO 7000 A VIA FOUR-PHOTON COUPLING IN GLASS First reported in 1970 by Alfano and
R. R. Alfano and S. L. Shapiro Shapiro, although the term was
Bayside Research Center of General Telephone & Electronics Laboratories Incorporated, never pUblIShed until the mid-1980's,
Bayside, New York 11360 and only later received widespread
(Received 9 January 1970) ‘acceptance
c JguUST 1970
» NUMBER 3 c
vOLUME 12, NUK It should be noted that later in the
JETP LETTERS year a Russian group also reported
CocusING OF LIGHT CRYSTAL the same effect, with even greater
) { SELF-FOCUS a1anov :
\ROADENTNG OF -.apzc'.mm.n.; remina, and V.I. T8 broadening.
N.G. Bondarentos orch Institutes '
Radiophysi oS Jone 1970 125 - N\
submitted faph 12, No. 3, 4€’
JhETF Pis. Red- 220 ' . 4n 2
ot 18 8elf-F0%  ine s
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quency © X
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HISTORY OF MID-IR SCG
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1978: OCTAVE SPANNING

‘ First octave spanning SCin an
‘ _ ; _ optical fiber, enabled by progress in
First demonstration of SCin an low-loss silica fibers and high
optical fiber was achieved using a power Nd:YAG lasers.
kW dye-laser produced 110-180 nm N
bandwidth in the visible.
N WIDEBAND NEAR-I.R. CONTINUUM

(0-7-2-1 um) GENERATED IN LOW-LOSS
OPTICAL FIBRES

New nanosecond continuum for excited-state spectroscopy ELECTRONICS LETTERS 7th December 1978 Vol 14 No.25 TRANSMISSION
Chinlon Lin and R. H. Stolen 10 PUMP EDGE 0|F SILICA
' 0
Bell Tefepi.mne Laboratories, Halmdel. New Jersey 07733 .E SO LITON REGIME 1
Applied Physics Letters, Vol. 28, No. 4, 15 February 1976 =) 1
2| ~. !
FIBER WAVEGUIDE g (13 ; - :
M e i .
SPLITTER | gng LENS g I I
0 ¥ 4 '
D : ‘ | |
NITROGEN 2- I |
BROADBAND LA . 1
CONTINUM 0. ] . |
. 4416 A 6328 & 06 08 IO }2 14 A 16 8 20 2.4
MERA wavelength
& “ FiG. 2. (a) Continuum generated in the fiber waveguide with a 9 o
FIG. 1, Experimental arrangement for the continuum broad-band Coumarin 120 dye laser as the pump.
generation. Fig. 2 Spectra of the continuum obtained in a GeO, doped

silica-core multimode fibre
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_ BN Generation of infrared supercontinuum covering 3-14 ym in
Already in 1985, SCG was demonstra- dielectrics and semiconductors
ted from 3-14 pm by pumping bulk
GaAs with a CO, laser. It would take

almost three decades before similar SNGLE psec psec | ©0;
: . ] . PULSE <—| REGENERATE [~ switeH LASER
_ broadening was achieved infibers. SeLECTION AMPLIFER OSCLLATOR
mJ
. psec
r‘9:3|[.¢m!-"LI'I.SE
= INPUT o SIGNAL
Bs o DETECTOR | FECOROSR [~ DETECTOR

g

(Is/1.)Cc (Arb. Units)

<]

MID-IR FIBERS

?
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HISTORY OF MID-IR SCG

12000: PCF & SC

29 April 2020
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J.Lucas et al., Comptes Rendus Chimie 21, 916-922 (2018)

2000: TAPERS
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HISTORY OF MID-IR SCG
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he first chalcogenide fiber made ‘gr : ZBLAN
from As253 was a success despite E g ,,,,,,,,, nF
having losses > 10-20 dB/m and g 3 AsS
poor mechanical stability. g, - - - Asse
3 T & are e BRI GeAsse
N 1 2 3 4 5 6 7 8 9 10 11 12 13 TeAsSe

N.S.KapanyandR. J. Simms, Infrared Phys. 5, 69-80 (1965). Wavelength [pm]

C.R.Petersenetal., Infrared Physics & Technology 91,182-185 (2018)

1.E-04
~ P 2005: As2Se3 PCF
.g 1.E-05 \
& 1506 Supereonmau Inspired by the success of the silica PCF,
r. researchers from Naval Research Laboratory (US)
g | demonstrated the first SC beyond the silica
- transmission range.

1lE-OSZUUO 22.00 24'00 ZBIOO ZBlOO 30'00 32'00 3400 \

Wavelength (nm) L. B.Shaw et al. ASSP 2005, TuC5 (2005)
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1974: ZrF4 GLASS

was discovered around 1974,

and the first fiber was made

around 1980. It took many

| years before the loss and
mechanical stability was

\good enough for SCG.

Heavy-metal fluoride glass \

29 April 2020 DTU Fotonik
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HISTORY OF MID-IR SCG

1984: LOW LOSS

g &8 §

=i
o

ANSMISSION LOSS (dB/km)

AN

2 3

WAVELENGTH (um)

"

ZBLAN GLASS

ZBLAN (ZrF4-BaF2—LaF3—\
AlF;-NaF) was found to
be the most stable
fluoride glass for optical
fibers, and this was also
the first fiber to be used

for efficient SCG.

Y
\ LEVERREFLUORE.COM
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2006: ZBLAN SC

Due to the lack of practical \
high power mid-IR lasers, Xia
et al. used a continuum pump
based on silica fiber and 1.55
um components - a concept

\l<nown as cascading.

29 April 2020 DTU Fotonik
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HISTORY OF MID-IR SCG
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HISTORY OF MID-IR SCG
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OSA = PbSe ., MCT

Tellurite glass was demon- \
strated to have potential for SCG
uptoSumand10-20times
higher nonlinear index, but has
lower damage threshold than
ZBLAN and longer ZDW.

N

Power (dBm)

Wavelength (hm)

013 InF3 2 | " 03 v a0 1 U] Injected energy
\ = Fluoroindate { : (a) 120 nJ
Found to have reduced loss at =+ =Fluorozirconate (ZBLAN) i 103 =iy
] : o
longer wavelengths compared i '3 .20
to ZBLAN, but higher loss at ' ! 305 o= L’;‘;::mm
shorter wavelengths and thus - ,.'
‘typically lower damage 19 / =iy
J s/ ]
o-\—«—\-q':"'——,——,—_’—»—-y-“ﬂmp—,—'.—’—.//. BT A e A S——
2500 3000 3500 4000 4500 5000

threshold. : ,
\ 15 20 25 30 35 4 45 50
Wavelength (um)

w P
1 1

Loss (dB/m)
iy

Spectral density (dB)

Wavelength (nm)
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2012: CASCADING g .l
The NRL group also tried L AsSSIF T
cascaded pumping from silica to faser
ASZS3 flbe r' bUt was llmlted by Fig. 1. Schematic of all fiber laser system. HNLF: highly nonlinear fiber, SIF: step index fiber. 001
normal dispersion and losses. o
\ R.R. Gattasset al., Optical Fiber Technology 18, 345-348 (2012). Wavelength (um)
. e 2013: HIGH-NA
10" i : \
= 20 ps £ . .
E --—-s0ps| g ® Ina numerical conference paper it
= s .
E s 0 was proposed by the authors, that in
o L o
21 8 25 order to reach longer wavelengths
% : e the numerical aperture (NA) should
3 107 N g > be as high as possible to shift the ZDW
14] ' ]
8 RN, = towards shorter wavelengths, and to
i, E ’, ‘. - -
& a3 2 I increase confinement in the core.
Ly 4 8 10 12 14 18 0
Wavelength [um]

C.Aggeretal., Nonlinear Optics, NW4A.09 (2013)
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2014: FULL BANDWIDTH DEMONSTRATED e
Ayear after it was demonstrated experimentally, although the o o]
laser source used was an elaborate OPA system SR B

Wavelength (pm)

o Wavelength (pm)
a
. - 1 5 0 W Figure 1| Measured and calculated chalcogenide fibre parameters. a, Measured refractive indices of the fibre core and cladding glasses, and the calculated
§ 10+ A )..@C"(‘/: A'“’\‘\“‘.v""‘.r-"-fu,, o ~ IJ. NA. b, Calculated dispersion profiles (solid lines) of the core material (grey) and the four dominant guided modes of the fibre, LPO1 (blue), LPT1 (green),
= . p ﬁ"ll.\m” 'mw*n,:‘;(f \\ Arlr';]f“,..w]k‘ . f} LPO2 (orange) and LP12 (red), together with the measured dispersion (symbols) and calculated group delay (dashed line) of LPO1.
Pl - | " - A A n
E J *‘M 14 \\ | ) "Hw‘l*‘\i"' 4 ~_.J\
= 0] J N / 'ﬁﬁ W .-\ a 16
i " Iy \
{ £ o, I A 14
T T T T T T T T T T T T
1 2 3 4 5 & 7 3 9 0 n 12 3 14 _ 124
Wavelength (pm) TE
b d g 10
% 20 £
S e s ¢
g | £
g 12 4
= Fibre loss
E 08 2 H,0 W Atm. loss
O 15 Pl G | G N —
= 1 2 3 4 5 6 7 8 g 10 mn 12 13
0.0 Wavelength (um)
4
Wavelength (pm) Figure 2 | Measured fibre and atmospheric losses and fibre geometry. a, Loss measurements performed using a Fourier transform infrared spectrometer,
a U . where the fibre measurement was performed using an intermediate fabrication step fibre with a core diameter of ~288 pm and the atmospheric loss was
§ measured ina 250 mm compartment b, Scanning electron microscope image of the fibre core. Vertical and horizontal scale bars for the core are 15.67 pm
% —IO—; and 16.48 pm, respectively.
O
@ -20
< E
% 3 Microbolometer
-30 3 camera
] :
13 14
b d
fa Monochromator
=
2
3
Z
Aj:ﬂ Figure 3 | Experimental set-up for generating and measuring MIR SC. A noncollinear difference frequency generation (NDFG) unit pumped by an optical
s parametric amplifier (OPA) was used to produce the MIR pump. The output was free-space-coupled into the fibre and subsequently collimated by aspheric
5 lenses. A concave mirror was placed before the monochromator to prevent beam clipping and compensate for chromatic aberrations. Proper coupling to the

7 8 14
Wavelength (pm)

C.R.Petersenetal., Nature Photonics 8, 830-834 (2014)

DTU Fotonik

core was verified by near-field imaging using a micro-bolometer camera. BD-2, black-diamond-2 aspheric lenses; NDF, neutral density filter; CM, concave
mirror; LPF, long-pass filter.
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Pump peak power (MW) &

Wavelength (pm)

— EXD. {P0=E1 TKW)
e S (P =3.6KW)

— Exp. (P;=185.5kW)
— Sim. (Py=10.5kW)

12 14

s E6p. (P=356.7KW)
i (Pg=20.1KW)

Normalised Intensity (dB)

12 14

0 T
 Exp. (Py=658.9KW)
_1ok — Sim. (P;=33.2kW)
—onh
V)| I

Wavelength (um)

Figure B | Comparison between experimental and simulated SCG for the 6.3pm pump case for varying input
peak power, together with the ZDW of the fibre (black dashed). The simulations were able to reproduce some of the
same features present in the experimental spectra at low input power by reducing the simulated input peak power by a
factor of ~17.5. The high factor may be due to the fact that in our experiment a large part of the light is present around
the pump wavelength, where the simulations predict that almost all of the light will be shifted away. This may be caused
by the excitation of HOMs, which tend to cause little broadening and thus increase the signal around the pump.

DTU Fotonik
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Figure A | Comparison between experimental (red solid) and simulated (blue solid) SCG in the 4.5pm pump case
for varying input peak power, together with the ZDW of the fibre {black dashed). The simulations were able to
reproduce many of the same features present in the experimental spectra by reducing the simulated input peak power by
a factor of ~5, which then accounts for measurement uncertainty, loss of power to the orthogonal polansation and HOMs.
However, the short-wavelength SPM edge was consistently shorter than what was observed experimentally, which may
be due to a much higher loss of the test fibre at 2.9pm compared to the large-core fibre used for loss measurements.
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2017: CHALCO-HALIDE

Introducing halide elements improves the long-
wavelength transmission, but sacrifices the short
edge.
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2019: ALL-NORMAL

ANDi profile achieved through double-clad design.
Ingeneral DCF are interesting due to the many
_combinations of chalcogenide glasses.
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-2015: MULTI-MILLIWATT

Using atunable OPA basedona

MHz femtosecond laser the

average output power could be
increased. Combining this with a

As-Se suspended-core, to reduce
\the Z/DWto 3.5 um.

Tunable MHz OPA to
increase average power

Fiber polarizer

Santec

TLS510
1407r
Po\ar zer Y
High-QfNewport 1 Dichroic
Femtotrain Yb I ' | ! 1041nm mirror
B /_ Telescope
Broadband
waveplate Pump/signal
reject filter
4pm beam PPLN crystal
output
Long pass Gold mirrors
filter
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HISTORY OF MID-IR SCG

~15 mW

1 — T T T T T T T T
simulation
experiment

fast axis

Calculated dispersion, L 4'

Calculated dispersion, 7 = |
slow axis

' Measured dispersion
HE I T

},p=4.4_um
PUP=52 kW

‘ Pi"=3.5 kW
P | L | T R IR R

10 T T r 1 rrrrr 1t 11 100 — 1 T
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2016: HIGH NA SIF

Ge-Sb-Se core and a Ge-Se
cladding with numerical aperture
(NA) of 1.1.

(will get back to this one later)
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HISTORY OF MID-IR SCG

I

L (15-20 cm)

2017: TAPERS

| - - - . ~ (d) Loty |~ ba5um fager | -.\ (ejl
Toimprove powerhandling and scaling of average 3 Fpmee g1 & |
power, one ideais to taper larger mode-area fibers to R
combine power handling at the input with higher : bl Y |
intensity and short ZDW in the taper waist. . Vi w \\;
- — . ER \‘\:a\-clingtil (p.lsn) Ce 000 Pn:\L\'iun‘(?nowm)jé
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HISTORY OF MID-IR SCG

I

(b) L=9cm (c)L=13cm

Fission

Wavelength (um)

Trapped DWs
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HISTORY OF MID-IR SCG

I

10 0.5 8
R \\ 2 _ 2 _ 20 ' ' ' : ' Solid 5pm

Numerical proof-of- T, £, £, : |@ g1 (D Dashed 20um| |
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C.R.Petersenetal, Optics Express 24,749-758 (2016)
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Pre & Mid
Er/Yb Amps

Thulium Butt-Coupled Interfaces Splice

((O MFA 8TP  pea \ J

1.1ns [ [:

1.553um
Seed
Laser

The concept of cascading
was finally demonstrated to
reach up to 12 um with
greater power scalability
and stability.

Remarkably this was done
using only commercial
fibers.
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R.A.Martinez et al., Optics Letters 43, 296-299 (2018)
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PARAMETER SPACE

In general most optical fibers used for SCG can
be divided into five main groups, depending on
the NA and single vs. Multi-material design.

il

29 April 2020 DTU Fotonik

DESIGNING OPTICALFIBERS FOR SCG

MULTI-MATERIAL
+ TAILORED DISPERSION

+ SIMPLE FABRICATION
+ LOW LOSS @ + STRONG CONFINEMENT
- ALL-NORMAL DISPERSION - DIFFICULT FABRICATION
- WEAK CONFINEMENT - MULTI MODE

HIGH NA

LOW NA

+ TAILORED DISPERSION
+ STRONG CONFINEMENT
+ SIMPLE FABRICATION

+ TAILORED DISPERSION
- DIFFICULT FABRICATION

- CONFINEMENT LOSS
SINGLE MATERIAL

+ SINGLE MODE

- LOW DAMAGE THRESHOLD
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DESIGNING OPTICALFIBERS FOR SCG

I

Single-index fibers, like PCFs, exhibit
confinement losses (CL) at longer (@) 5
wavelengths. This depends on core T e
diameter, hole size, pitch, and number of E 0 ~
rings. In this case, the holes shrunk during 2 WA=3 54078040 ym=0.44
: . Ay F = = d/A=2 980/T.033 pm=0.42
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DESIGNING OPTICAL FIBERS FOR SCG

Numerical aperture (NA) is given by the index contrast
between core and cladding. High NA means high degree
of confinement, and thus have alarge impact on the
\nonlinearity and dispersion of a fiber.

I

D [ps/nm/km]

Fig. 2. (a) Dispersion for a SIF with NA=0.5 and core diameter of 5. 10, and 20um. (b)
Dispersion for a SIF with core diameter 10um and NA of 0.2, 0.6 and 1.0.
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DESIGNING OPTICALFIBERS FOR SCG

I

COMING BACK

Coming back to this result, part of the success comes
from the introduction of the 2nd ZDW, which is also
visible in the experimental spectrum at ~10.7 um.

Fundamental mode: D(ps/(nm*km))

B _
.35 om
'] 2
= >
= =
> 100 @
e Q
h e
c
g 25 150 =
L

-200

6 8 2 3 4 5 6 7 8 9 10 11 12 13 14
Wavelength(um) Wavelength (um)
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DESIGNING OPTICAL FIBERS FOR SCG

Using a core and cladding made from Ge,,As,,Se;ssTe, ;s
(at.%) and Ge,yAs,; ,Se, . (at.%), respectively, an NA of
_f17.88 was achieved from 2.5-15 um.

I
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DESIGNING OPTICAL FIBERS FOR SCG

I

CASCADING
N

The fiber materials, core diameters, and lengths must
be carefully chosen to optimize the efficiency of the
cascade. For this task numerical modelling is very

\handy.

10f < Electronic ' ' T~ 200 . .
:é: | i _E‘ ol
g E 200+ ]
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DESIGNING OPTICAL FIBERS FOR SCG

I

S 0 LITO N CO U P LI N G C.R.Petersenetal, Optics Express 24, 749-758 (2016)

. g . 3 ‘ (a) (b)
Solitons are the main driving force behind \ v .o . o
cascaded SC, so one must make sure to design j % E %
- i 30' -w i 30 'ﬁ
 the cascade to allow solitons to couple between = 10 § E 10 ¢
- : " g B 20} E 8 20t =
fibers. If the difference between two fibers is 2 w3  E 03
large, solitons may fission or disperse. ol H g "t £
\ 7 g
a o : ;30 z oo 30 2
Wavelength (um) Wavelength {um)
(b)
E E
.:Eg ‘% peldt

1 15 2 25 3 0 1 15 2 25 3
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C. Aggeret al., Optics Letters 36, 2596-2598 (2011)
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PUMPING SCHEMES

Direct pumping

In-amplifier
generation

Cascaded
generation

Combination
(in-amp. + casc.)
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PUMPING SCHEMES

Laser diode
SR HEE AMPLIFIER ::]\
generation

I

OPG seed laser Amplifier
400ps at 2.75um Output
PRO O T T T T ' 0.30mW (OW)
(b) —1.47mW (0.08W)
n 1 1 =1 1.0mW (0.35W)
Simple source design 20} IS
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CON

w
S

Power spectral density
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S

= Amplificationis limited by nonlinear dynamics

0 | L 1 L |
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J.-C. Gauthier et al., Optics Letters 40, 5247-5250 (2015)
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PUMPING SCHEMES _ OLANTIERE
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I
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S.Venck, Laser Photonics Rev.2000011(2020).
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PUMPING SCHEMES

Combination
(in-amp. + casc.)

Accepted paper titled: “In-amplifier and cascaded mid-
infrared supercontinuum sources with low noise
\through gaininduced soliton spectral alignment”.
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K. Kwarkye, Sci. Rep (ACCEPTED, 2020).
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= APPLICATIONS o -
“ m. 2 .— : '1 / =
SUPERCONTINUUM 'SOURCE SYNCHROTRON BEAMLINE GLOBAR THERMAL SOURCE
= Compact, porfable, turn- = Massive, stationary, shared = Very compact and cheap
OMARING APPLES AND PEARS \ = Flexible optical fiber * Free-space beam output = Omni-directional output
'SCis often compared to traditional output
B E = Tunable pulse duration »= Fixed pulse duration and = Continuous radiation
broadband sources of IR radiation, such as and repetition rate repetition rate
thermal sources and synchrotrpns. = Covers 2-10 microns = Covers hard X-ray to = Covers 2-25 microns

However, there are some key differences. (5000-1000 cm™) mMicrowaves infrared (5000-400 cm-)

\ = >4 orders of magnitude = >2 orders of magnitude = Low brightness

brighter than Globars brighter than Globars
Wavenumber (cm")
10000 5000 3000 2000 1500 1200 1000
1024 \ \ T \ \ \ \
NKT SuperkK EXW
22 ml—f' NKT Superk MIR
10 NORBLIS Aurora
Globar
-------- Synchrotron

Brightness (phoi(s-srAmm2-0.1%BW))

1 2 3 4 5 6 7 8 9 10 ™
Wavelength (zm)
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APPLICATIONS FAIR COMPARISON _

To assess the potential of SCin an
application it is more fair to compare
against competing commercial
technologies.

—

I

NORBLIS

b

L:“-".,:_‘l,

‘(fl

SUPERCONTINUUM |’ EC-QCL PARAMETRIC SOURCES

Output Fiber v Free—-space Free—-space
Scan speed Full spectrum in 250ms step and 2s step and settle
single shot (~us) settle or 100ms

free scanning

Power spectral Medium Very high High
density

Pulse energy High Low Very high
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= APPLICATIONS
A
NORBLIS
Advantages B ;,’ Advantages
= High pulse energy P = High power spectral density

= Photo-acoustic = Scanning IR microscopy

spectroscopy/imaging = Defense applications
" High peak power = Fast scanning, narrow line

= Nonlinear microscopy » Sparse wavelength

= Fast and broadband acquisition spectroscopy
= Upconversion micro/spectroscopy " Photo-thermal microscopy
= FTIR spectroscopy/microscopy = Coherent Raman microscopy

= Optical Coherence Tomography
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APPLICATIONS

Shortly after the first demonstration of SCG in ZBLAN fiber, the
same group published results with spectroscopy. A dual-beam
modality was chosen to greatly reduce the noise of the
otherwise very noisy SC source.

N

I

N\

K.Ke et al., Optics Express17,12627-12640 (2009)

Supercontinuum source Reflectivity

{’E = T .\I ( 100 Py ‘i ] measured
155 1] I 20 —modelled
: Ea : | gg.5| -Theoretical : 2 7
188 i ~ Fit | © .

e - T ST ) )
| 1000 2000 3000 4000 | 1 3050 3250 3450 S | 7
| Wavelength (nm) | e i 1Ty Ty
: Y : X Fa F2 3000 3100 l 3|2i1;'30 33‘00 : 34'0&

| Gain switched (.) (.‘.) | w Wavelength (nm)

: laser, ns pulses DSF ZBLAN |

\ ¥

e S — ———— ————— ——

DTU Fotonik

29 April 2020

Wave number (cm™)
3846 3333 3941 2632
bl

a) FSC Output

a) Endothelial Cells

b) Smooth Muscle Cells

c) Macrophages

Log(1/R)

P ]
-
TR L GREF#1 Sigino—

d) Adipose Tissue
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E_-_ Chopper «—= Lens ©==3 2500nm LP Filteri

———————
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Wavelength (nm)

220 sample on reflective slide Gold Mirror i

]
1
1
L

~ 2017: CAVITY-ENHANCED SPECTROSCOPY.
Utilizing the coherent beam properties to improve\
the sensitivity. Although their detection was slow,

the broadband instantaneous spectrum of SC has

potential for monitoring fast processes.

N

C. Amiotetal., Appl. Phys. Lett 111, 061103 (2017).
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APPLICATIONS

2012: MICROSCOPY (3.2-3.6 um)

T ZBLAN-based SC used for visualizing oil and water
based on chemical absorption features.

I

N

‘Asimple proof-of-concept study.

Chopper
Tapered PCF

2018: IR MICROSCOPY (5.7-7.3 um)

Chalcogenide-based SC used for visualizing a human
colon tissue sample at different characteristic
wavelengths. The goal was to obtain similar
information to the sample exposed to chemical H&E
staining.

However, currently QCLs are ahead of SC in this
application, with commercial products already on the
market. To properly utilize SC and to compete with
QCLs, the detection must be fast and parallelized to

\compete.
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APPLICATIONS

I

2019: OPTICAL COHERENCE TOMOGRAPHY —— :

Combining mid-IR SC with upconversion enabled fast
and high-resolution mid-IR OCT. In OCT the resolution
is proportional to the bandwidth of the source, which is

why SCisideal. £ _
N | 0 \ERE T G
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RBL1

N) www.norblis.com(N

Small Danish university spin-out

Founded in 2018

Mission

NORBLIS  “=* NORBLIS IS

“To push super-
continuum and
applications
further

into NIRRT,

“"Create broadband
------ { PHOTONICS mid-IR light
WEST 2019 sources that are
< compact, robust,
and reliable.”

DTU Fotonik
Department of Photonics Engineering

crpetersen@norblis.com
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THANKYOU FORYOUR ATTENTION!

If you have additional questions | can be reached at chru@fotonik.dtu.dk

Institut for Fotonik

®

HE

Department of Photonics Engineering
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