Welcome to Today's Webinar!

MODELING PHOTODETECTORS USING THE DRIFT-DIFFUSION EQUATIONS FOR RF-PHOTONICS APPLICATIONS

()SA

15 July 2021 • 10:00 EDT (UTC -4:00)

Photonic Detection Technical Group

Technical Group Executive Committee

Giuseppe D'Aguanno Chair Johns Hopkins University, Applied Physics Laboratory

Achyut Dutta Vice Chair Founder Banpil Photonics

Shuren Hu Events Officer SiLC Technology

Kimberly Reichel Webinar Officer 3DEO, Inc.

Vivek Nagal Social Media Officer Johns Hopkins University

About the Photonic Detection Technical Group

Our technical group focuses on detection of photons as received from images, data links, and experimental spectroscopic studies to mention a few. Within its scope, it is involved in the design, fabrication, testing of single and arrayed detectors. Detector materials, structures, and readout circuitry needed to translate photons into electrical signals.

Our mission is to connect the 2000+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Special sessions at CLEO and OFC, including a panel discussion on *Silicon Photonics for LiDAR* and Other Applications
- 11 previous webinars

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at <u>www.osa.org/pd</u>
- On LinkedIn at <u>https://www.linkedin.com/groups/8297763/</u>
- Email us at <u>TGactivities@osa.org</u>

Today's Speaker

Curtis R. Menyuk

University of Maryland Baltimore County

Short Bio:

- Professor, University of Maryland Baltimore County (USA)
- Research Interests: Modeling of photonic systems
- APS Fellow, OSA Fellow, IEEE Fellow, IEEE Photonics Society William Streifer Award (2013), Humboldt Foundation Research Award (2015)

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

Curtis R. Menyuk, Ehsan Jamali, Y. Hu, M. Hutchinson, J. D. McKinney, V. J. Urick, and K. J. Williams

July 15, 2020

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

Phase noise

- Phase noise model
- Device optimization
- Nonlinearity in frequency combs and bleaching
 - Characterization of nonlinearity
 - Bleaching model
 - OIPs and IMDs in MUTC and *p-i-n* PDs
 - Distortion-to-signal ratios
- 7 Future initiative

- Optical intensity is transferred to the electric current
- The bandwidth or response time is constrained by
 - transit time
 - RC time constant

Nonlinear distortion and noise limit the PD performance

Motivation

- High-current, high-power PDs are important in
 - RF-photonic systems¹
 - Optical communication systems¹
 - Photonic microwave generation systems²
- Phase noise in PDs is a critical limiting factor in many RF-photonic applications³
- Device nonlinearity limits the performance of these PDs

²T. M. Fortier et al., Opt. Lett. **38**, 1712–1714 (2013).

³V. J. Urick et al., *Fundamentals of Microwave Photonics* (Wiley, 2015).

RF-photonic system

High-current, high-power PDs are important in

- RF-photonic systems
- optical communication systems

RF-photonic system

• RF-photonic systems have advantages over purely electronic systems¹

- Iow transmission loss
- large bandwidth
- reduced size
- immunity to electromagnetic interference
- RF-photonic systems also have some drawbacks
 - low transmission power
 - nonlinear distortion
 - spurious free dynamic range (SFDR)
- ¹A. Seeds and K. Williams, J. Lightw. Technol. **24**, 4628–4641 (2006).

History

- In the mid-1990s, Williams et al. developed a 1D model of high-current PDs, based on the drift-diffusion equations¹
- In 1997, Wilson and Walker developed 1D and 2D models of metal-semiconductor-metal PDs to study the transient behavior of the PDs²
- In 2000, Jiang et al. developed a circuit-equivalent model to study distortion in a *p-i-n* PD³

¹K. J. Williams et al., J. Lightw. Technol. **14**, 84–96 (1996).

²S. P. Wilson and A. B. Walker, Semiconduct. Sci. Technol. **12**, 1265–1272 (1997).

³H. Jiang et al., IEEE Photon. Technol. Lett. **12**, 540–542 (2000).

History

- In 2011, Fu et al. used a 1D drift-diffusion model to study the nonlinear intermodulation distortion in a modified uni-traveling-carrier (MUTC) PD¹
- In 2014, Hu et al. developed 1D and 2D drift-diffusion models to study sources of nonlinearity in a *p-i-n* PD²
- In 2017, Hu et al. developed a 1D drift-diffusion model to study amplitude-to-phase conversion in an MUTC PD³

¹Y. Fu et al., IEEE J. Quantum Electron. **47**, 1312–1319 (2011). ²Y. Hu et al., J. Lightw. Technol. **32**, 3710–3720 (2014).

³Y. Hu et al., IEEE Photon. J. **9**, 5501111 (2017).

- In 2019, Jamali et al. used a 1D drift-diffusion model to calculate phase noise in MUTC PDs¹
- In 2020, Jamali et al. developed a model to study the impact of nonlinearity including bleaching in MUTC and *p-i-n* PDs on RF-modulated electro-optic frequency combs^{2,3,4}

- ¹S. E. Jamali Mahabadi et al., Opt. Express **27**, 3717–3730 (2019).
- ²S. E. Jamali Mahabadi et al., Opt. Lett. **46**, 813–816 (2021).
- ³S. E. Jamali Mahabadi et al., Opt. Express **29**, 11520–11532 (2021).
- ⁴S. E. Jamali Mahabadi et al., IEEE Photon. J. DOI: 10.1109/JPHOT.2021.3091039.

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

6	Phase noise
	I mase morse
	Phase noise model
	 Device optimization
	Nonlinearity in frequency combs
	and bleaching
	• Characterization of nonlinearity
	• Bleaching model
	• OIPs and IMDs in MUTC and <i>p-i-i</i>
	PDs
	 Distortion-to-signal ratios
	Future initiative

Structure of a *p-i-n* PD

Structure of the *p*-*i*-*n* PD we model

Device is composed of¹

- *n*-InP substrate ($N_D = 2 \times 10^{17} \text{ cm}^{-3}$)
- *n*-InGaAs *i*-layer ($N_B = 5 \times 10^{15} \text{ cm}^{-3}$)
- *p*-InGaAs *p*-layer ($N_A = 7 \times 10^{18} \text{ cm}^{-3}$)

¹K. J. Williams et al., J. Lightw. Technol. **14**, 84–96 (1996).

Structure of the *p*-*i*-*n* PD we model

Device is composed of¹

- *n*-InP substrate ($N_D = 2 \times 10^{17} \text{ cm}^{-3}$)
- *n*-InGaAs *i*-layer ($N_B = 5 \times 10^{15} \text{ cm}^{-3}$)
- *p*-InGaAs *p*-layer ($N_A = 7 \times 10^{18} \text{ cm}^{-3}$)

¹K. J. Williams et al., J. Lightw. Technol. **14**, 84–96 (1996).

Structure of a UTC PD

Structure of a UTC PD

- The photons are only absorbed in the *p*-region
- The response time only depends on the electrons
- The saturation current is high due to a reduced space charge effect

Structure of an MUTC PD

Structure of an MUTC PD

- A thin intrinsic layer was used as an absorption layer
- A cliff layer is placed between the absorption layers and collection layers
- move through the interfaces

Structure of the MUTC PD we model

¹Z. Li et al., IEEE J. Quantum Electron. **46**, 626–632 (2010).

Drift-Diffusion Model

$$\begin{aligned} &\frac{\partial n}{\partial t} &= G_{\text{opt}} + G_{\text{ii}} - R(n, p) + \frac{\nabla \cdot \mathbf{J}_n}{q}, \\ &\frac{\partial p}{\partial t} &= G_{\text{opt}} + G_{\text{ii}} - R(n, p) - \frac{\nabla \cdot \mathbf{J}_p}{q}, \\ &0 &= \nabla \cdot \nabla \varphi + \frac{q}{\epsilon} \left(N_D^+ + p - n - N_A^- \right), \end{aligned}$$

 G_{ii}

 \mathbf{J}_p

- $\begin{array}{ll} n & \mbox{electron density,} \\ G_{\rm opt} & \mbox{optical generation rate,} \\ R & \mbox{recombination rate,} \\ \mathbf{J}_n & \mbox{electron current density,} \\ N_D^+ & \mbox{donor density,} \end{array}$
- *p* hole density,
 - impact ionization generation rate,
- φ electric potential,
 - hole current density,
- N_A^- acceptor density,

Drift-Diffusion Model

$$\begin{aligned} \mathbf{J}_p &= qp\mathbf{v}_p(\mathbf{E}) - qD_p(\mathbf{E})\nabla p, \\ G_{\mathrm{ii}} &= \alpha_n \frac{|\mathbf{J}_n|}{q} + \alpha_p \frac{|\mathbf{J}_p|}{q}, \\ G_c &= Q\alpha, \end{aligned}$$

$$\mathbf{J}_n = qn\mathbf{v}_n(\mathbf{E}) + qD_n(\mathbf{E})\nabla n,$$

$$G_{\text{opt}} = G_c \exp\left[-\alpha(L-x)\right],$$

$$Q = \frac{P}{A},$$

- \mathbf{v}_n electron drift velocity,
- D_n electron diffusion coefficient,
- G_c generation rate coefficient,
- L device length,
- A the area of the light beam,
- α_n electron impact ionization coefficient,

- \mathbf{v}_p hole drift velocity,
- D_p hole diffusion coefficient,
 - α absorption coefficient,
 - *x* distance across the device,
 - *P* the power of the light beam,
- α_p hole impact ionization coefficient,

Velocity model

Empirical expressions that have been used to fit $\mathbf{v}_n(\mathbf{E})$ for electrons¹ and $\mathbf{v}_p(\mathbf{E})$ for the holes² are given by

$$\mathbf{v}_n(\mathbf{E}) = \frac{\mathbf{E}\left(\mu_n + \nu_{n,\text{sat}}\beta|\mathbf{E}|\right)}{1 + \beta|\mathbf{E}|^2}, \ \mathbf{v}_p(\mathbf{E}) = \frac{\mu_p \nu_{p,\text{sat}}\mathbf{E}}{\left(\nu_{p,\text{sat}}^{\gamma} + \mu_p^{\gamma}|\mathbf{E}|^{\gamma}\right)^{1/\gamma}},$$

 μ_p

 $v_{p,sat}$

 γ

$$\mu_n$$
 : low-field electron mobility,

- $v_{n,sat}$: saturated electron velocity,
 - : fitting parameter,

β

- : low-field hole mobility,
- : saturated hole velocity,
- : fitting parameter,

²K. W. Böer, *Survey of Semiconductor Physics* (Van Nostrand Reinhold, 1990).

¹M. Dentan and B. de Cremoux, J. Lightw. Technol. **8**, 1137–1144 (1990).

Velocity of electrons and holes in InGaAs

¹T. H. Windhorn et al., J Electron. Mater. **11**, 1065–1082 (1982).

Diffusion model

Empirical expressions that have been used to fit $D_n(\mathbf{E})$ for electrons¹ and $D_p(\mathbf{E})$ for the holes² are given by

$$D_n(\mathbf{E}) = \frac{k_B T \mu_n / q}{\left[1 - 2\left(|\mathbf{E}|/E_p\right)^2 + \frac{4}{3}\left(|\mathbf{E}|/E_p\right)^3\right]^{1/4}}, \ D_p(\mathbf{E}) = \frac{k_B T}{q} \frac{\mathbf{v}_p(\mathbf{E})}{\mathbf{E}},$$

$$E_p$$
 : fitting parameter, 4×10^3 V/cm

 ¹K. W. Böer, *Survey of Semiconductor Physics* (Van Nostrand Reinhold, 1990).
 ²K. J. Williams, "Microwave nonlinearities in photodiodes," PhD Dissertation, University of Maryland College Park, Maryland, USA, 1994.

Diffusion model

Drift-diffusion coefficients

- The electron velocity and diffusion decrease when the field increasesWhy?
 - electrons transition from the Γ -valley to the L-valley and X-valley
 - their effective mass increases¹

¹Y. A. Goldberg and N. M. Schmidt, *Handbook Series on Semiconductor Parameters* (World Scientific, London, 1999).

Recombination-Generation

- The largest contribution to recombination is the Shockley-Read-Hall (SRH) effect.
 - also known as trap-assisted nonradiative recombination
 - the expression for SRH recombination is

$$R = \frac{np - n_i^2}{\tau_p(n + n_i) + \tau_n(p + n_i)},$$

- τ_n : electron lifetime, τ_p : hole lifetime,
- n_i : intrinsic doping concentration,
- The generation rate from impact ionization:

$$G_{\mathrm{ii}} = \alpha_n \frac{|\mathbf{J}_n|}{q} + \alpha_p \frac{|\mathbf{J}_p|}{q}, \ \alpha_{n,p} = A_{n,p} \cdot \exp\left[-\left(\frac{B_{n,p}}{|\mathbf{E}|}\right)^m\right],$$

 A_n, A_p, B_n, B_p, m : impact ionization parameters

Fully implicit method¹ (backwards Euler method) is used to solve the equations

$$\frac{n^{t+1} - n^{t}}{\Delta t} = F_{n}(n^{t+1}, p^{t+1}, \varphi^{t+1})$$

$$\frac{p^{t+1} - p^{t}}{\Delta t} = F_{p}(n^{t+1}, p^{t+1}, \varphi^{t+1})$$

$$0 = F_{\varphi}(n^{t+1}, p^{t+1}, \varphi^{t+1})$$

¹S. Selberherr, *Analysis and simulation of semiconductor devices* (Springer-Verlag Wien, 1984).

Modeling Approach (1-D Scheme)

Gridding scheme used in device model for multilayer devices

- φ , *n*, *p* are defined at integer grid values
- $\mathbf{J}_n, \mathbf{J}_p, \mathbf{E}$ are defined at half-integer grid values

1-D model: light beam

• In 2-D simulations, we assume that the beam is Gaussian-shaped with a profile given by

$$Q(r,t) = Q_0(t) \exp\left[-2\left(r/r_0\right)^2\right],$$

• In 1-D simulations, the physical Gaussian beam profile must be approximated by a constant intensity Q_{1d} over an effective beam area with r_1 , so that

$$\int_{0}^{\infty} 2\pi r Q(r,t) dr = \pi r_1^2 Q_{1d}$$

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method

Harmonic powers in CW mode

AM-to-PM noise conversion

5 Phase noise
• Phase noise model
Device optimization
6 Nonlinearity in frequency combs
and bleaching
• Characterization of nonlinearity
• Bleaching model
• OIPs and IMDs in MUTC and <i>p-i</i>
PDs
• Distortion-to-signal ratios
7 Future initiative

Harmonic powers in CW mode

Simulation results: 1-D vs. 2-D

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

25/66
Impact ionization

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

26/66

Summary for the *p-i-n* PD

- We studied 1-D and 2-D models of a single heterojunction *p-i-n* PD that are based on the drift-diffusion equations.
- We obtained excellent agreement with experiments
- We have examined the impact of
 - An external load
 - Thermionic emission
 - Impact ionization

Conclusion

The dominant physical cause of the observed saturation and the increased nonlinearity at large reverse bias is impact ionization

¹Y. Hu, et al., J Lightw. Tech. **32**, 3710–3720 (2014).

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

	Phase noise
	Phase noise model
	Device optimization
	Nonlinearity in frequency combs
	and bleaching
	• Characterization of nonlinearity
	Bleaching model
	• OIPs and IMDs in MUTC and <i>p-i</i> -
	PDs
	 Distortion-to-signal ratios
7	Future initiative

Microwave generation

Remark

Optical amplitude noise can be converted into phase noise. We will analyze amplitude-to-phase noise conversion in the PD

¹T. M. Fortier et al., Opt. Lett. **38**, 1712–1714 (2013).

• The amplitude-to-phase noise coefficient $\alpha_{\rm AM/PM}$ can be defined as the induced root mean square phase variation arising from a fractional power change

$$\alpha_{\rm AM/PM} = \Big| \frac{\Delta \phi}{\Delta P/P} \Big|,$$

- $\Delta P/P$: fractional power change
- $\Delta \phi$: phase change
- One method to measure AM-to-PM conversion is to measure the time-domain impulse response of the PD and to use a Fourier transform to calculate the phase difference as the power varies

¹J. Taylor et al., IEEE Photonics J. **3**, 140–151 (2011).

Experimental results

- There are two null points
- At these two points, the AM-to-PM noise conversion is zero
- What is physical reason?

¹J. Taylor et al., IEEE Photonics J. **3**, 140–151 (2011).

Simulation results

• We obtain good agreement with experimental results for the location of nulls

32/66

Summary of AM to PM conversion

- The appearance of nulls in the AM-to-PM noise conversion is due to the nonlinear dependence of the electron velocity on the electric field
- When the pulse duration is reduced below 500 fs, the AM-to-PM noise conversion coefficient does not change
- When the pulse duration is greater than 500 fs, the second null in the AM-to-PM shifts to larger photocurrents
- The repetition rate does not change the AM-to-PM conversion coefficient
- The AM-to-PM noise conversion coefficient can be greatly reduced by removing InGaAs and InP heterojunction

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

S Phase noise Phase noise model Device optimization Nonlinearity in frequency combs and bleaching Characterization of nonlinearity Bleaching model OIPs and IMDs in MUTC and *p-i-n* PDs

• Distortion-to-signal ratios

7 Future initiative

Calculation of the phase noise in MUTC PDs

• The mean-square phase fluctuation is given by

$$\langle \Phi_n^2 \rangle = \frac{1}{N_{\text{tot}}} \frac{\int_0^{T_R} h(t) \sin^2 \left[2\pi n(t-t_c)/T_R\right] dt}{\left\{ \int_0^{T_R} h(t) \cos \left[2\pi n(t-t_c)/T_R\right] dt \right\}^2},$$

- $N_{\text{tot}} = \text{total number of electrons in the photocurrent}$
- t_c = central time of the output current
- T_R = repetition time between optical pulses
- In the limit of short optical pulse widths ($\lesssim 500$ fs):
 - $\langle \Phi_n^2 \rangle$ tends to a non-zero constant

$$\left\langle \Phi_n^2 \right\rangle = \frac{1}{N_{\text{tot}}} \frac{\int_0^{T_R} h_e(t) \sin^2 \left[2\pi n(t-t_c)/T_R\right] \mathrm{d}t}{\left\{ \int_0^{T_R} h_e(t) \cos \left[2\pi n(t-t_c)/T_R\right] \mathrm{d}t \right\}^2},$$

★ $h_e(t)$ = electronic impulse response of the device

Phase noise results

¹F. Quinlan et al., Nat. Photonics **7**, 290–293 (2013).

²W. Sun et al., Phys. Rev. Lett. **113**, 203901 (2014).

Phase noise results

¹F. Quinlan et al., J. Opt. Soc. Am. B **30**, 1775–1785 (2013).

- ²F. Quinlan et al., Nat. Photonics **7**, 290–293 (2013).
- ³W. Sun et al., Phys. Rev. Lett. **113**, 203901 (2014).

Device optimization

- Our goal is to reduce the tails in the impulse response
 - A long tail in the impulse response translates to higher phase noise
- $\bullet\,$ We first altered the thickness of each absorption layer up to $10\%\,$
 - no significant change
- We next altered the doping density in each of the absorption layers
 - we obtained an impulse response with a smaller tail to lower the phase noise

Device optimization

- Phase Noise 1 = phase noise of the Li et al.¹ structure
- Phase Noise 2 = phase noise of the modified structure
- Difference = (Phase Noise 1) (Phase Noise 2)

Pulse Width	Original structure	Modified structure	Difference
1 ps	-178.6 dBc/Hz	-180.0 dBc/Hz	1.4 dBc/Hz
12 ps	-174.0 dBc/Hz	-175.5 dBc/Hz	1.5 dBc/Hz
22 ps	-169.7 dBc/Hz	-172.8 dBc/Hz	3.1 dBc/Hz

¹Z. Li et al., IEEE J. Quantum Electron. **46**, 626–632 (2010).

Summary of phase noise

- We used the drift-diffusion equations to calculate
 - the impulse response
 - the phase noise

in an MUTC PD with short optical pulses

- We found excellent agreement with prior experiments¹ and Monte Carlo simulations²
- Optimization results:
 - we designed a structure with
 - ★ lower phase noise
 - reduced nonlinearity

²W. Sun et al., Phys. Rev. Lett. **113**, 203901 (2014).

¹F. Quinlan et al., Nat. Photonics **7**, 290–293 (2013).

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

B Phase n	
Phase	noise model
Devic	e optimization
6 Nonline	earity in frequency combs
and ble	aching
Chara	cterization of nonlinearity
Bleach	hing model
OIPs a	and IMDs in MUTC and <i>p-i-i</i>
PDs	
Distor	tion-to-signal ratios
F uture i	

Measurement setup¹

¹M. Draa et al., Opt. Express **19**, 12635-12645 (2011).

The input modulated average light power P(t):

 $P(t) = P_0(t) \left\{ 1 + m \left[\sin \left(2\pi f_1 t \right) + \sin \left(2\pi f_2 t \right) + \sin \left(2\pi f_3 t \right) \right] \right\},\$

- In the CW mode
 - $P_0(t)$ is a constant value as a function of time
- In the pulsed mode
 - $P_0(t)$ is given by

$$P_0(t) = \sum_n A_0 \operatorname{sech}\left(\frac{t - nT_r}{\tau}\right),$$

$P_0(t)$:	input average light power	t	:	time
т	:	modulation depth	au	:	pulse width
$f_1, f_2, \text{ and } f_3$:	three modulation	T_r	:	repetition time
		frequencies			

Spectrum of a CW three-tone modulated input

 $\tilde{P}_{opt}(f)$ is the Fourier transform of $P_{opt}(t)$

 $P_{\text{opt}}(t) = P_0(t) \left\{ 1 + m \left[\sin \left(2\pi f_1 t \right) + \sin \left(2\pi f_2 t \right) + \sin \left(2\pi f_3 t \right) \right] \right\},\$

Comb generation with a pulsed input

49/66

Nonlinearity characterization: CW vs. pulsed mode

- For CW mode
 - there is only one IMD2 and one IMD3
 - there is only one OIP2 and one OIP3
- For pulsed mode
 - ▶ there is one IMD2_n and one IMD3_n for each comb line n
 - ▶ there is one OIP2_n and one OIP3_n for each comb line n

Bleaching in PDs

Empirical Bleaching Model

In the drift diffusion equations:

$$\begin{aligned} G_{\rm opt} &= B_f \ G_c \ \exp\left[-\alpha(L-x)\right], \\ B_f &= \frac{A+BI_{\rm p}}{C+DI_{\rm p}+EI_{\rm p}^2}, \end{aligned}$$

Fitting parameters	p-i-n	MUTC
A	1.0000	1.0000
В	0.0098	0.0322
С	0.6526	2.7181
D	0.0236	0.1632
E	0.0015	0.0016

Experimental and empirical results

¹S. E. Jamali Mahabadi et al., Opt. Lett. **46**, 813–816 (2021).

- We calculated the impact of the bleaching on the device nonlinearity as a function of the average optical power
- We calculated the second- and third-order intermodulation distortion (IMD2 and IMD3) powers
 - frequencies that IMD3 generates can introduce spurious signals
 - ★ that cannot be filtered out from the fundamental response
 - this is important for microwave photonic applications where these would appear as false signals of interest
- We calculated the second- and third-order output intercept points (OIP2 and OIP3) to characterize IMD2 and IMD3

$OIP2_n$ and $OIP3_n$ in the MUTC PD

- OIPs decrease as frequency increases with and without bleaching
- OIPs are bigger at low frequencies without bleaching
- The effect of bleaching vanishes between 10 GHz and 16 GHz
 - due to decrease in space charge
- It reappears beyond 16 GHz
 - due to reduction in powers

$OIP2_n$ and $OIP3_n$ in the *p*-*i*-*n* PD

- OIPs decrease as frequency increases without bleaching
- They are almost flat with bleaching
 - the decrease in space charge compensates for the decrease in responsivity
- The gap decreases as frequency increases

Distortion-to-signal ratios

We define distortion-to-signal as

$$\rho_{2n} = \text{IMD}2_n/S_n, \qquad \rho_{3n} = \text{IMD}3_n/S_n,$$

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

56/66

Comparison of ρ_{2n} and ρ_{3n}

- The ratios increase rapidly for the MUTC PD
- The ratios remain relatively flat for the *p-i-n* PD

Comparison of ρ_{2n} and ρ_{3n}

• *p-i-n* PD has better performance at high frequencies

this is surprising

★ it is well known that MUTC PDs have less distortion in CW

• MUTC PD has better performance at low frequencies

Comparison of ρ_{2n} and ρ_{3n}

Why does nonlinearity have more impact on the MUTCs at high frequencies?

- Distortion products are summed contributions from many comb lines
 - ► distortion product at $nf_r + (f_1 f_2)$ is obtained from: signals at $lf_r + f_1$ and $mf_r - f_2$ with l + m = n for all l and m
- The distortion products add more coherently in the MUTC PD than they do in the *p-i-n* PD
 - MUTC PD
 - ★ the current in the MUTC PD is almost entirely due to electrons
 - ▶ *p-i-n* PD
 - ★ the current has significant contributions from both electrons and holes
 - ★ we attribute the lower coherence of the distortion products at each frequency to the presence of two carriers

Summary of nonlinearity in frequency combs with bleaching

- We have developed an empirical model of bleaching
 - we determined the parameters of bleaching model
 - we obtained good agreement with experimental results
- We calculated $IMD2_n$ and $IMD3_n$ in the *p-i-n* and MUTC PDs
 - taking into account bleaching
 - ► Note: There is a separate IMD2_n and IMD3_n for each comb-line where *n* is the comb line number
- We calculated OIP2_n and OIP3_n to characterize IMD2_n and IMD3_n for each comb line n
- We calculated distortion-to-noise ratios ρ_{2n} and ρ_{3n}

Summary of nonlinearity in frequency combs with bleaching

- The principal effect of bleaching is to lower the responsivity
 - decreases the number of electrons in the device
 - ★ lowers the nonlinearity due to space-charge effects
 - ► the decrease becomes more pronounced as input optical power increases
 - **\star** fundamental comb powers S_n and the intermodulation products saturate
 - the impact of bleaching decreases at high comb line numbers
- The difference in behavior of ρ_{2n} and ρ_{3n} between the *p-i-n* PD and MUTC PD is due to
 - greater coherence of the nonlinear products in the MUTC PD
 - the impact in the MUTC PD increases at high comb line numbers

Table of contents

Introduction

- Motivation
- History

Model

- Structure of the *p-i-n* PD
- Structure of the MUTC PD
- Drift-Diffusion Model
- Implicit modeling method
- Harmonic powers in CW mode
- AM-to-PM noise conversion

5 Phase noise
• Phase noise model
 Device optimization
6 Nonlinearity in frequency combs
and bleaching
• Characterization of nonlinearity
 Bleaching model
• OIPs and IMDs in MUTC and <i>p-i</i> -
PDs
 Distortion-to-signal ratios
7 Future initiative

Future Initiative: Intelligent optimization (E. Simsek)

Machine Learning: Prediction Using an Artificial Neural Network (ANN)

Preliminary Results

	Performance Metric Statistics			Prediction Errors (%)			
	Minimum	Maximum	cv	LR	kNN	RF	ANN
Phase noise	-178.62 dBc/Hz	-161.51 dBc/Hz	-0.022	0.38	0.39	0.19	0.18
Ave. Current	1.46 mA	9.9 mA	0.65	16.81	5.16	3.5	2.47
IR Max	28.5 ns ⁻¹	97.56 ns ⁻¹	0.22	4.81	5.48	3.06	2.88
Decay Time	22.22 ns	184.77 ns	0.5	9.91	11.34	7.12	5.21

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

Future Initiative: Intelligent optimization (E. Simsek)

Machine Learning: Design

Preliminary Results: The design, recommended by an ANN trained with 1000+ samples, outperforms all PDs used in training.

Modeling photodetectors (PDs) using the drift-diffusion equations for RF-photonics applications

Thank you for your attention