Nonlinear and Electro-Optic Metal-Oxides for Active Photonic Devices

Rachel Grange

ETH Zurich Department of Physics Institute for Quantum Electronics Optical Nanomaterial Group

<u>www.ong.ethz.ch</u> grange@phys.ethz.ch @rachel_grange

Terror ETH Zurich / Stefan Weiss

The Optical Nanomaterial Group ONG

Marc Reig

Escalé

Vogler-N

Andrea Morandi

Sissi Wang

Saerens

Karvounis

Weigand

Eric

Dénervaud

Wentao

Qiu

Andreas Maeder

Hanh Duong

Alumni: A. Sergeyev, N. Hendricks, C. Renaut, B. Jordaan, F. Richter, M. Timofeeva, Flavia Timpu, Romolo Savo, Jolanda Mueller, Franciele Henrique

E *H* zürich

Teidi Hostettler, D-PHYS

Quadratic $\chi^{(2)}$ materials as toolbox at small scale

Our focus

- Nonlinear and electro-optic signals at the nanoscale
- Multipolar imaging tools to study nanomaterials
- Nanofabrication with unconventional materials
- Miniaturized multifunctional photonic devices

Nonlinear Imaging

Integrated Photonics

Random Media

Metastructures

Outline

Miniaturizing $\chi^{(2)}$ materials

Nonlinear or electro-optic metasurfaces Pulsed laser deposited BaTiO₃ FIB and spin coated nanoparticles Sol-gel nanoimprinted metalens Miscellaneous photonic structures

Why miniaturizing quadratic optical materials?

Telecommunication

Modulators

Reig Escalé, et al. OL 43(7) 2018 Pohl, et al. IEEE PTL 33 (2) 2020

Traditional vs integrated modulator design

Mode Area > 30 μm² <40 Gbit/s

100 Gbit/s

Traditional vs integrated modulator design

Mode Area > 30 μm² <40 Gbit/s

Mode Area < 1 μm² 100 Gbit/s Parallelization

Why miniaturizing quadratic optical materials?

Telecommunication

Modulators

Reig Escalé, et al. OL 43(7) 2018 Pohl, et al. IEEE PTL 33 (2) 2020 Sensor

Spectrometer

Pohl et al. Nature Photonics 14 (1) 2020

Lithium Niobate Nano Spectrometer

Why miniaturizing quadratic optical materials?

Telecommunication

Modulators

Reig Escalé, et al. OL 43(7) 2018 Pohl, et al. IEEE PTL 33 (2) 2020

Sensor

Source

Spectrometer

Pohl et al. Nature Photonics 14 (1) 2020

Supercontinuum

Reig Escalé, et al. APL Photonics 5 (12) 2020

Supercontinuum generation in LNOI

851 THz (352 nm) in a 14-mm long rib waveguide

ETH zürich

Reig Escalé et al. APL Photonics, 5, 12, 2020

Supercontinuum generation in LNOI

ETH zürich

Reig Escalé et al. APL Photonics, 5, 12, 2020

Supercontinuum generation in LNOI

ETH zürich

Reig Escalé et al. APL Photonics, 5, 12, 2020

Why miniaturizing quadratic optical materials?

Optical material with multifunctions

Bulk crystal

Lithium Niobate (LiNbO₃) Barium Titanate (BaTiO₃)

Quadratic $\chi^{(2)}$ materials

Centrosymmetric Non-0

Non-Centrosymmetric

Silicon Diamond SiO₂ (crystalline quartz) Gallium arsenide (GaAs) Barium titanate (BaTiO₃) Lithium niobate (LiNbO₃)

• Electro-optic

Electro-optic

Change in the refractive index linearly proportional to the electric field

Electro-optic tensor $\chi^{(2)}$ of LiNbO₃

$$\begin{pmatrix} \Delta(1/n^2)_1 \\ \Delta(1/n^2)_2 \\ \Delta(1/n^2)_3 \\ \Delta(1/n^2)_4 \\ \Delta(1/n^2)_5 \\ \Delta(1/n^2)_6 \end{pmatrix} = \begin{pmatrix} 0 & -3.4 & 8.6 \\ 0 & 3.4 & 8.6 \\ 0 & 0 & 30.8 \\ 0 & 28 & 0 \\ 28 & 0 & 0 \\ -3.4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}$$

More properties of quadratic $\chi^{(2)}$ materials: LiNbO₃ Electric field

Electro-optic

Change in the refractive index linearly proportional to the electric field

Electro-optic tensor $\chi^{(2)}$ of LiNbO₃ d_{33} = 30.8 pm/V

BaTiO₃

 $d_{42} = 923 \text{ pm V}^{-1}$

Abel, S., Nature Mater 18, 42-47 (2019).

More properties of quadratic $\chi^{(2)}$ materials: LiNbO₃

- Electro-optic
- Large band gap: 3-4 eV
- Refractive index > 2
- Very inert

- \rightarrow Modulation
- \rightarrow Highly transparent 0.3 5 μm
- → Waveguiding of light
- → Robust in harsh environment

Does this material exist at a small scale?

Bulk crystal

At small scale?

Thin films or powders?

Does this material exist at a small scale?

Bulk crystal

At small scale?

Rabiei, P.; Gunter, P. *Applied Physics Letters* **2004**, *85* (20).

Kim, E.; ... Grange, R. ACS Nano **2013**, 7 (6).

Challenges of miniaturization

Reig Escalé, et al. OL 43(7) 2018

Pohl, et al. IEEE PTL 33 (2) 2020

Extinction ratio from -12 dB to more than **-30 dB**

Propagation losses < 0.1 dB/cm

Nanofabrication at BRNC and FIRST clean rooms

Challenges of miniaturization

Reig Escalé, et al. OL 43(7) 2018

Pohl, et al. IEEE PTL 33 (2) 2020

100 Gbit/s BER = 1.3×10⁻⁵

Outline

Miniaturizing $\chi^{(2)}$ materials

Nonlinear or electro-optic metasurfaces Pulsed laser deposited BaTiO₃ FIB and spin coated nanoparticles Sol-gel nanoimprinted metalens Miscellaneous photonic structures

200 nm thick polycrystalline film of BaTiO₃

Collaboration with M. Trassin and M. Fiebig at ETH

200 nm thick polycrystalline film of BaTiO₃

Ellipsometry

Collaboration with M. Trassin and M. Fiebig at ETH

Height (nm)

200 nm thick polycrystalline film of BaTiO₃

Crystalline structure: Cubic or tetragonal

Collaboration with M. Trassin and M. Fiebig at ETH

Nonlinear optical characterization

- SHG anisotropy change between 120°C and 130°C
- Phase change from tetragonal to cubic crystal structure at T_c
- Tetragonal crystal structure present at room temperature

Collaboration with M. Trassin and M. Fiebig at ETH

Top-down etching of the thin film

SEM image of a BaTiO₃ metasurface

Timpu, ...Grange. Advanced Optical Materials 2019, 7 (22).

E *H* zürich

Barium titanate metasurface down to the near UV

SEM image of a BaTiO₃ metasurface.

Timpu, ...Grange. Advanced Optical Materials 2019, 7 (22).

Barium titanate metasurface down to the near UV

Timpu, ...Grange. Advanced Optical Materials 2019, 7 (22).

Linear optical transmittance

Calculation of the SHG conversion efficiency

Barium titanate metasurface down to the near UV

Measured SHG signal

Timpu, ...Grange. Advanced Optical Materials 2019, 7 (22).

Calculation of the SHG conversion efficiency

Outline

Miniaturizing $\chi^{(2)}$ materials

Nonlinear or electro-optic metasurfaces Pulsed laser deposited BaTiO₃ FIB and spin coated nanoparticles Sol-gel nanoimprinted metalens Miscellaneous photonic structures

Particle-based photonic structures: advantages

- Simplify the fabrication : avoid etching process of metal-oxides
- Use powder instead of high quality crystal : test new compounds

Serrano, ...Goldner. All-Optical Control of Long-Lived Nuclear Spins in Rare-Earth Doped Nanoparticles. *Nat Commun* **2018**

Particle-based photonic structures: advantages

- Simplify the fabrication : avoid etching process of metal-oxides
- Use powder instead of high quality crystal : test new compounds
- Useful for nonlinear optics: relaxing the phase matching condition, broadband

Second-order signal? Electro-optic effect?

How to relax phase matching?

Phase mismatch due to dispersion

Ground state

Second-Harmonic Generation SHG

 $\frac{1}{2}$

$$\vec{P} = \varepsilon_0 \chi^{(1)} \vec{E} + \varepsilon_0 \chi^{(2)} \vec{E}^2 + \cdots$$

ETH zürich

Boyd, Robert W. Nonlinear optics. 2003

How to relax phase matching?

Random Quasi-Phase-Matching

Raybaut et al., Nature 432, 374–376 (2004)

ZnSe grains with 10s of microns in sizes

Chen and Gaume, Opt. Mater. Express 9, 400-409 (2019)

$$I_{\rm SH} \propto N^2 \propto V^2 \longrightarrow I_{\rm SH} \propto N \propto V$$

Bottom up assemblies : emulsion driven technique

BaTiO₃ nanoparticles in solution Typical diameter 50 nm

L. Isa, D-MATL, ETHZ M. Niederberger, D-MATL, ETHZ S. Pratsinis, D-MAVT, ETHZ

Droplets act as a template for spherical assemblies

Barium titanate disordered microspheres

ETHzürich

Savo et al. Nat. Photonics 14, 740–747 (2020)

Random Quasi Phase Matching

ETH zürich

Savo et al. Nat. Photonics 14, 740–747 (2020)

Random Quasi Phase Matching

- New platform to study nonlinearities in disordered materials
- No need to match the length of a crystal with the laser source

Electro-optic Metasurface with BaTiO₃ Nanoparticles

BaTiO₃ nanoparticles film and FIB nanostructuring

<u>1 cm</u>

BaTiO₃ nanoparticles film and FIB nanostructuring

Linear optical properties

Nonlinear optical properties

BaTiO₃ nanoparticles film and FIB nanostructuring

Platinum $f = \frac{1}{2} s = \frac{1}{2} Batio_3$

P=550nm

ETH zürich

Karvounis, et al, Adv. Opt. Mat., 8, 17, 2020

Quartz

BaTiO₃ nanoparticles-based electro-optic metasurface

Optical field

Static electric field

BaTiO₃ nanoparticles-based electro-optic metasurface

E *H* zürich

Karvounis, et al, Adv. Opt. Mat., 8, 17, 2020

Outline

Miniaturizing $\chi^{(2)}$ materials

Nonlinear or electro-optic metasurfaces Pulsed laser deposited BaTiO₃ FIB and spin coated nanoparticles Sol-gel nanoimprinted metalens Miscellaneous photonic structures

Sol-gel nanoimprint

Solution-processed Barium Titanate Nonlinear Woodpile Photonic Structures

ETH zürich

Solution-processed Barium Titanate Nonlinear Woodpile Photonic Structures

Very large surface area

Solution-processed Barium Titanate Nonlinear Woodpile Photonic Structures

4 layers

The diffraction pattern proves that there is an underlying cubic photonic crystal structure.

E *H* zürich

Vogler-Neuling, et al., *Phys. status solidi* **2020**, 1900755.

Solution-processed Barium Titanate Nonlinear Woodpile Photonic Structures

Solution-processed Barium Titanate Nonlinear Woodpile Photonic Structures

ETH zürich

Vogler-Neuling, et al., *Phys. status solidi* **2020**, 1900755.

Outline

Miniaturizing $\chi^{(2)}$ materials

Nonlinear or electro-optic metasurfaces Pulsed laser deposited BaTiO₃ FIB and spin coated nanoparticles Sol-gel nanoimprinted metalens Miscellaneous photonic structures

Electro-Optic Lithium Niobate Metasurfaces in the Visible

Enhancement of modulation amplitude by 2 orders of magnitude compared to the substrate

Weigand, Vogler-Neuling et al. Arxiv: http://arxiv.org/abs/2106.12232

Electro-Optic Lithium Niobate Metasurfaces in the Visible

Modulation based on **linear electro-optic effect** enhanced at the resonance for **AC voltages below 1 V**_{pp}.

(Compatible with CMOS micro-controllers) Modulation speeds of **2.5 MHz** could be detected

Weigand, Vogler-Neuling et al. Arxiv: http://arxiv.org/abs/2106.12232

ETH zürich

r= 89 nm, 113 nm, 135 nm, 154 nm

Conclusion

Original assemblies and the material quest is not over

- → Relaxing fabrication and new materials
- \rightarrow Not only SHG but electro-optic

Karvounis, et al, Adv. Opt. Mat., 8, 17, 2020

REVIEW: Karvounis et al, Adv. Opt. Mat., Nov. 20 doi.org/10.1002/adom.202001249

Savo et al. Nat. Photonics 14, 740-747 (2020)

Outlook

*******			*******	

		******	********	
*******		******		

*******	**********		********	
	*********	*******	********	********

*******	*********		********	********

	*********		*******	
	*********		*******	
	**********		********	********
*******	**********	******		adaggecce
		*****		deserve e e e

Bottom up metasurface

Random network

Corrosion imaging

ong.ethz.ch

grange@phys.ethz.ch

