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Why Photonics for computing?

Light provides an enormous
bandwidth, possibility of wavelength

division multiplexing

Communication through optical
waveguides can be almost lossless

Light does not interact with other light:

there is an inherent parallelism offered

by light
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Why optical computing failed: Intrinsic and extrinsic reason

CONV + POOL

s S6x56

The surge in ANN is recent phenomenon

Lack of nonlinearity

Lack of tunability

Fast tuning of
optical phase
by 21 with
low power is

difficult!!

Light does not
interact easily:
the input-output
relation is
generally linear.

Electronic computers and software




Opportunities for today

Nanophotonics and Emerging material systems Emerging material systems
metaphotonics for tunable photonics for nonlinear photonics

Novel resonator structure
(multimode)

+ Large computational Quantum-confined structures, Non 1. AIN
resources for design solution-processed materials, L‘(l)\lllblgzarz%atena > | ’
*  Sophisticated nano- atomically thin materials, phase- ! ’ materials

. - * Organic materials
fabrication technology change materials 2)



Photonics in computing

Optics as interconnect for high
performance computing

Laser

Modulator

Optics as signal
carrier: already
commercialized

Photo-detector

Nature Photonics, 2010

No explicit signal transduction

Output Power

Digital logic with optics
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Hybrid Electro-photonics computing
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Nature Photonics, 2017

Computational imaging
and computer vision with

nanophotonics
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Capture image with existing
camera and software
processing to extract features
Capture information in a
non-canonical basis, and with
software create image

Very little innovation in
photonic devices.



/Hybrid integrated photonics for
VMM and nonlinear activation

Majumdar et al., Optics Letter, 2014

Zheng et al., Optical Material Express, 2018
Zheng et al., ACS Photonics, 2019

Zheng et al., Advanced Materials 2020
Chen et al., ACS Photonics 2022
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ﬁ\fleta—optical information processing

Colburn et al., Science Advances, 2018

Colburn et al., ACS Photonics, 2019

Zhan et al., Applied Optics, 2018

Zhan et al., Science Advances, 2019
Zhelyeznyakov et al, Optics Communication, 2020
Ryou et al., PRA, 2020

Colburn et al., Applied Optics, 2019

Tseng et al., Nature Communications 2021

NORTY

~10 — 100um

Computational
Postprocessing

NN A Ny

- N NN

Co-optimization of meta-elements and
computational algorithms




Basic block of neural network

Linear Vector

Matrix Multiplier
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W Volatile thermal control of the MZIs: power-
hungry and limit scalability: An < 0.001

Englund, Soljacic, 2017



Non-volatile phase-change materials (PCMs): GST
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Ellipsometry X-ray diffraction (XRD) Zheng, J. et al. Opt. Mater. Express 8(6) (2018).



Pros & Cons of PCM

Non-volatility: ~10 years. No external power supply needed!!

High contrast between two states (An > 1)

Multi-level operation potentially possible

Fast reconfiguration (~ ps — sub-ns for amorphization, ~sub-ns - ns for
crystallization).

Low-energy (fJ/bit): fundamental limit ~1.2 aJ /nm3

Excellent scalability: large scale and shrunk to nanoscale, easy to deposit
on any substrate; CMOS compatible

Is not limited by Kramers-Kronig relation!!

Phase transition conditions can be difficult to identity
Low cyclability: potentially possible over 10'° cycles; in practice 10° cycles
Multi-level operation is stochastic

High optical loss for most PCMs, including GST
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Integration of GST with silicon photonics and optical switching
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Zheng, J. et al. Opt. Mater. Express 8(6) (2018).

Reset (amorphization)

A single pulse of ~31 m]J/cm?.
Equivalent energy: ~9 aJ/nm?
(~620 pJ for GST on
waveguide)

Fundamental limit: 1.2 aJ/nm3

Set (crystallization)

450 numbers of pulses with ~10
m]J/cm? at 50 kHz.

Equivalent energy: ~3 aJ/nm?
(~200 pJ for GST on waveguide).



Consideration of the design of broadband switches

Traditional MZI switch Directional coupler (DC) switch
1 L 1
g " GST
inputs . | / outputs s
1 N ~Sl—~ A 1 £
o = g —i
2 i ) 2 ) 1 no loss
N e - % 2 no loss
% S ——
P
7T o 1 1 1 1 1 L |
ZAnef f 2L, 3 4 5
~ 2.2 um L (um)

High loss associated with ¢GST is
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When L = L,, change the phase of one Large insertion loss and cross talk! circumvented!

arm, the light will switch port.



Low loss broadband switch
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Phase-change 2 x 2 DC switch: experiment

(b) Coupler
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Photonics, 2019 : : . . .
hotonics <1dB insertion loss even when the material loss is very high.



Electrical Control of GST-SOI platform
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Broadband electrically controlled programmable unit

crystallization

amorphizak

input
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Phase transition actuated via graphene heater: _7°]
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PCM integrated Silicon Photonic Switch for neural network

Linear Vector

Matrix Multiplier




Nonlinear activation function: Self-electro-optic effect
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Symmetric self-electro-optic device

| ‘ p-Si
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P e 012
P —

Majumdar et al., Optics Letter, 2014
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Is integrated photonics the way to go?

Pros:

* Long travel path and resonant structures: reconfigurability and nonlinearity

* On-chip, compact footprint

 Alignment can be performed during lithography with sub-wavelength resolution

Cons:

* Scalability will be an issue: number of waveguides will be same as number of input data
points (N~1000)

e Number of MZI or switches (N*~10°)

* Resonant structures can require significant power and control circuits to stabilize: a serious
problem for WDM

* Reconfigurability and nonlinearity still very power hungry

* May not be suitable to capture signal which are already in optical domain (generally free
space)



Can we do deep network?

I

* Hybrid approach: Each signal transduction consumes energy and add latency
* All optical approach: how do we regenerate signal as it propagates?
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Colburn, Applied Optics, 2019



/Hybrid integrated photonics for
VMM and nonlinear activation

Majumdar et al., Optics Letter, 2014

Zheng et al., Optical Material Express, 2018
Zheng et al., ACS Photonics, 2019

Zheng et al., Advanced Materials 2020
Chen et al., ACS Photonics 2022
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ﬁ\fleta—optical information processing

Colburn et al., Science Advances, 2018

Colburn et al., ACS Photonics, 2019

Zhan et al., Applied Optics, 2018

Zhan et al., Science Advances, 2019
Zhelyeznyakov et al, Optics Communication, 2020
Ryou et al., PRA, 2020

Colburn et al., Applied Optics, 2019

Tseng et al., Nature Communications 2021

Computational
Postprocessing

NN A Ny

- N NN

Co-optimization of meta-elements and
computational algorithms




Reduce Computational Complexity using Free-space Optics

~10 —100um

Computational
Postprocessing

/
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t

See: Stork and Robinson, Applied Optics Vol. 47, Issue 10, pp.
B64-B75 (2008) Co-optimization of optics and
Matic and Goodman, Journal of the Optical Society of America | i

A Vol. 6, Issue 3, pp. 428-440 (1989) computational algorithms

Can we also simplify
optics using computing?



Rethinking DNN architecture
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Knowledge distillation to circumvent nonlinear activation:
Spectral CNN Linear Counterpart (SCLC)

Pre-trained Teacher Network

Class Probability
o )

€=——
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—
Class Probability

Update @
Student Network -«

Input SCLC +Back-end ~ Knowledge ___
Image distillation

Softmax
Temp =t

Softmax
Temp =1
[y

-ﬁ Temp loss \;

[ Student loss ’—

Loss back

Student loss: Cross-Entropy loss © Temp-loss: KL divergence loss under t

Xiang et al., Applied Optics, 2022
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Lenslet array Array of Convolutional

Lenslet array

Kernels or Amplitude Masks

SCLC, Back End, and KD Training

+
_@ Table 4. Ablation Studies of Pooling Components,

Structure Accuracy
Max pooling 68.41%
Spectral pooling 70.12% (+1.71%)
Back end only 41.40%

SCLC (front end) + back end
SCLC (front end) + back end + KD

70.12% (+28.72%)
81.40% (+11.28%)




Dielectric Metasurface: sub-wavelength diffractive optics
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* Single stage lithography
* No higher order diffraction

A\

Refractive Multi-level diffractive optics




Solving chromatic aberrations in metasurfaces
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Novel metasurface + computational imaging

Conventional Metalens Image

Final Reconstructed Image

-

..




Cubic + Quadratic metasurface

2
) == (VT YT+ 2= f) + 3G +57)

«a is a design parameter for the combined metasurface

a = 557




Poor image quality: under broadband, ambient illumination

Capasso Group Din Ping T'sai Group Majumdar Group



Design strategy

Training Inputs Fixed Parameters
[ Transmission
Coefficients Function Blocks D Optimizable Parameters
‘ » Image Formation }, Gradient Flow
= [ fmETA } e | PyeTa (<
PSF at0+e PSF até

Poeconv| <
1 Reconstruction { ‘

Synthetic
Measurement

|
=) » fsEnsor ]-} ’3

The computational backend uses neural network to train the parameters for the deconvolution algorithm.



High quality imaging: probably “good enough™ quality?

» 2 . r —
) . :

End-to-end designed
meta-optics

Compound refractive
lens consisting of 6
lenses

Comparable image quality is captured using a sensor with a volume 55,0000 times smaller.
500 um aperture, f/2 lens, Field of View: 40, latency: 36ms
Can be scaled to 1 inch, {/1, Field of View: 30° with latency of ~10ms



Varifocal functionality via static meta-optics and computational imaging

Refractive EDOF
a b Singlet Meta-optic

13mMm

80mm

AREE

Whitehead et al, Photonics research, 2022 M eta SuU rfa e



Computational Spectroscopy
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Object detection with meta-optical frontend and computational backend

One fully connected
m—) layer and tanh
nonlinearity

4 4

0 S00 1000 1500 2000

Use incoherent light as the source

High resolution input (1 million pixels) get reduced to
100 points that is fed to electronic layer

Without meta-optical frontend (just electronic layer):
67% accuracy

With meta-optical frontend : 95% accuracy

0 S00 1000 1500 2000



Need nonlinear processing of an image
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Majumdar Lab, Phys. Rev.
Applied, 5, 054001, 2016
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Nonlinear activation: slow but strong nonlinearity

Flat Mirror Thin Lens (focus f) Curved Mirror (curvature R)

A&

d d,
Vol. 9, No. 4/ April 2021 / Photonics Research PHYSICAL REVIEW A 101, 013824 (2020)

To exploit the parallelism of light we need to perform nonlinear operation in parallel
Such parallel operation can provide large bit-rate, even with slow nonlinearity, like saturable
absorption in thermal atoms.

Can we exploit cavities that preserve the image integrity? Can we use flat-band in photonic structure?



Summary

Integrated photonic based solution

Phase-change material can significantly reduce the size
and energy of the phase shifter.

Self-electro-optic devices can provide optoelectronic
nonlinearity.

Scalability will remain a problem.

Cascading is unclear.
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Meta-optics-based optical computing

Mandrill

| Computational design of metasurfaces B -

Co-optimization of meta-elements and
computational algorithms

Object detection and classification using meta-
optics and computational postprocessing.
Post-processing can also mitigate fabrication error.
Functionality can be improved with fast spatial
light modulator and free-space nonlinearity.



My take on Optical Information Processing: Game of Computing

Materials: Quantum Devices: Ring resonator,

Confined structures, 2D photonic crystal, Electronics SOftWﬂI'e

materials, Lithium Niobate waveguide, grating, comb

Architecture: Free-space,

WD), Integrated

photonics

Goal is not to build best optical computer, but rather to build one superior to its
electrical implementation!! Need to remember history, focus on scalability, reliability,
reconfigurability and nonlinearity.



