Optical Trapping and Manipulation of a Single Human Virus

Presented by:

Optical Trapping and Manipulation in Molecular and Cellular Biology Technical Group

Technical Group by following #BTTechGroupOSA

¥ 🗎

#BTTechGroupOSA

#BTTechGroupOSA

Stephanie Jones @DrSHJones Don't forget to register for: Optical

Trapping and Manipulation of a Single Human Virus shar.es/1Jmtmw

on Twitter.

Director of Social Media

Secretary

Technical Group Webinars

Minorities and Women in OSA (MWOSA)

OSA CONNECT

Young Professionals

Corporate Members Optics & Photonics Regions

Frequently Asked Questions

Librarians

Journals & Proceedings	Meetings & Exhibits	Celebrating 100 Years	Explore Membership	Industry Programs	Get Involved	Foundation & Giving
Home / Get Involved / Technical	Divisions / Bio-Medical Opt	ics				
Optical Trapping	and Manipula	ation in Mole	cular and Cellula	ar Biology (BT)		
Get Involved Technical Divisions + Bio-Medical Optics + Microscopy and Optical Cohe Tomography (BM) Molecular Probes and Nanot Optical Biosensors (BB) Optical Trapping and Manipu Molecular and Cellular Biolog Therapeutic Laser Applicatio Tissue Imaging and Spectros	erence bio-Optics (BP) ulation in gy (BT) optica ms (BA) copy (BS)	tical Trappin d Cellular Bic	g and Manipulat blogy (BT) Digital trapping has been widely us nolecular and cellular biology, inclu novement mechanisms of molecul idhesion. This group focuses on th potical trapping and manipulation 1 rreas include the use of evanescen weezers for molecular- and cellula luidics and lab-on-a-chip technolog	tion in Molecular set to uncover fundamental aspects of uding the understanding of the ar motors and the forces involved in cell e development and application of novel echniques to biological problems. Focus t fields and state of the art optical r-scale manipulation, integration of jes, as well as optical sorting and optical	Announcer Join the Optical Tra Molecular and Celli their inaugural wet at 11:00 EDT. Dr. Wei Cheng fron present his work di virion can be stable measured in physic precision.	nents pping and Manipulation in ular Biology Technical Group for sinar on Thursday, 16 June 2016, In the University of Michigan will emonstrating that a single HIV-1 ed trapped, manipulated and ological media with high Vebinar Now>>
Photobiomodulation (BL) Fabrication, Design & Instrumen Information Acquisition, Proces Optical Interaction Science	ntation ssing & Display Nat	GROUP LEADERSHIP me Affi	UPCOMING MEETINGS	RECENTLY PUBLISHED Title	View the feature is: on Optical Trappin issue presents stuc OTA Topical Meetir in Vancouver, Cana	sue of Biomedical Optics Express g Applications online now. The fies that were the focus of the 1g, which was held in April 2015 ada.
Photonics and Opto-Electronics Vision and Color Division Technical Group Newsletter	Ster Pet	ven Leonard Neale Univer Pauzauskie Univ	versity of Glasgow versity of Washington	Chair Vice Chair	Join our On Stay connected wit	Iline Community
Technical Group Webinars	Pet	er John Reece Uni	versity of New South Wales	Director of Events	Manipulation in Mo	Secular and Cellular Biology

www.osa.org/BT

University of Victoria

University of Washington

Stephanie Jones

Daniel Richard

Burnham

Contact your Technical Group and Get Involved!

- Twitter #BTTechGroupOSA
- Announce new activities
- Promote interactions

Optical Trapping and Manipulation in Molecular and Cellular Biology Technical Group

Webinars (today is our first!)

Previous webinars will be available for viewing at the OSA Technical Group website

Panel discussions, discussion forums, and social gatherings at conferences Look for us at the Optical Trapping Applications (OTA) and other conferences

Facebook page Optical Cooling and Trapping (OT) Technical Group; https://www.facebook.com/groups/1874 51984746395/

Welcome to Today's webinar!

Dr Wei Cheng – University of Michigan

Optical Trapping and Manipulation of a Single Human Virus

Wei Cheng Associate Professor Pharmaceutical Sciences Biophysics Biological Chemistry University of Michigan, Ann Arbor

Trapping of Single Tobacco Mosaic Virus

Optical Trapping and Manipulation of Viruses and Bacteria

Ashkin & Dziedzic, *Science* 1987

TMV, 300 nm long, 18 nm diameter

Challenges for Trapping Animal Viruses

Technical Elements to Prepare for Trapping of a Single Virus

(1) The choice of trapping laser wavelength: 830 nm instead of 1064 nm Less heating, free of oxygen-mediated photo damage

(2) Back-focal-plane interferometry with high accuracy: Diffusion coefficient, corner frequency, particle diameter, trap stiffness

(3) Simultaneous two-photon fluorescence excitation by the 830 nm trapping laser with single-fluorophore sensitivity

830 nm CW laser can excite GFP

Cheng, Hou & Ye, *Opt. Lett* (2010) 35: 2988 Hou & Cheng, *Opt. Lett* (2011) 36: 3185 Hou & Cheng, *Biomed. Opt. Express* (2012) 3: 340

DNA or RNA genome

Optical Trapping of HIV-1 Virions in Culture Media

(in complete culture media: 90% DMEM + 10% FBS)

Polydispersity of HIV-1 Virions

Briggs et al., *EMBO J* (2003) 22: 1707

Tolić-Nørrelykke...Flyvbjerg, *Rev. Sci. Instr. (2006)* 77: 103101

Optical Trap Stiffness and Materials

Bustamante, Cheng & Mejia, Cell (2011) 144: 480

Relate Optical Trap Stiffness to Particle Size

Rayleigh particle, stiffness $\propto R^3 4\pi n_0 R/\lambda <<1$, in reality > 1

An Analytic Solution to Optical Trap Stiffness

$$\kappa = \alpha I_0 \omega_0 \frac{2\pi}{\xi^3} \left[\sqrt{2\pi} \left((\xi a)^2 + \frac{1}{4} \right) e^{-2a^2} erfi(\sqrt{2}a\xi) - \xi a e^{-2a^2/\varepsilon^2} \right]$$

Stiffness = F(particle radius, particle refractive index, beam parameters)

Pang, Song & Cheng, Biomed. Opt. Express (2016) 7: 1672

Applies to spherical particles < 160 nm radius

Measure Refractive Index for Single HIV-1 with High Precision

Stiffness = F(particle radius, particle refractive index, beam parameters)

Compared to 1.58 of polystyrene; close to 2M sucrose; first time that the RI of a single virus was ever measured.

Pang, Song & Cheng, Biomed. Opt. Express (2016) 7: 1672

Parameters from Optical Trap

Normalized occurrence

а

Vormalized occurrence

0.6

- **Diffusion coefficient**
- Corner frequency
- Particle diameter
- Trap stiffness
- Index of refraction •

Pang, Song & Cheng, *Biomed. Opt. Express* (2016) 7: 1672

Two-photon fluorescence

0.3

Pang...Cheng, Nature Nanotech (2014) 9: 624

with single-molecule sensitivity

Multi-parameter analysis and potential sorting of biological nanoparticles Current flow cytometry >300 nm

DeSantis & Cheng, WIRES Nanomedicine and Nanobiotechnology (2016)

Two-photon Fluorescence with Single-Molecule Sensitivity

Heterogeneity Matters for Viruses

Model of HIV-1 virion

Presumed gp120/gp41

Zhu...Roux, Nature (2006) 441: 847

Optical Trapping 'Virometry'

DeSantis...Cheng, *J. Biol. Chem* (2016) 291: 13088

Cooperativity among Gp120 Molecules

Prepared seven populations of HIV-1, each population with on average different density of gp120 molecules Virometry to measure # of gp120

Cell culture assay for infectivity

DeSantis...Cheng, J. Biol. Chem (2016) 291: 13088

Clinical Implications

- Are they prone to transmission?
- Transmitted virus are enriched for higher gp120 content. Parrish et al. PNAS (2013) 110: 6626

Not every HIV-1 virion is created equally!

Single-Cell Manipulation for Single Virion Delivery

Suction force controlled by hydrostatic pressure

Scale bar: 10 µm

Hou & Cheng, unpublished

Specific Association upon a Single Collision is Rare

"Forced" delivery of HIV to CD4⁺ T cells

- An optically trapped virion is slowly brought into contact with a cell
- Attachment is easy to detect as an immobilized virion remains in focus
- The laser is turned off once the virion escapes

00 00 00 00 = 0	100 300 300 300 300		111
Trials	Attachments	Attachment Probability (%)	
73	0	0	

GFP labeled HIV-1, SUP-T1 cell, 20°C PBS

DeSantis & Cheng, unpublished

Frequent but Nonspecific Association Promoted by DEAE-dextran

Polycation 'bridge'

Koh & Cheng, Langmuir (2014) 30: 10899

Trials Attachments Attachment Probability (%) 77 59 >77

GFP labeled HIV-1, SUP-T1 cell, 20°C PBS

DeSantis & Cheng, unpublished

Possible Reasons for Lack of Attachment and Potential Future Development

- The virion may have low gp120; Combine with virometry
- Cell surface receptor may be low or distribution of receptors is heterogeneous

To form specific contact upon a single collision is a rare event!!

Conclusions

- For the first time, optical trapping of a single human virus
- □For the first time, measurement of the index of refraction for a single virus particle
- □Optical trapping virometry for multiparameter analysis of biological particles.
- HIV-1 gp120 displays a positive cooperativity in mediating HIV-1 infection.
- The technique to deliver a single virus to a single cell.

Acknowledgments

Past lab members:

Yuanjie Pang, Ximiao Hou Jin H. Kim, Hanna Song

Current lab members:

Mike DeSantis, Abhay Kotnala Chunjuan Tian Zhilin Chen, Tai-wei Li Chu Chen, Amir Hobson

Current collaborators:

Per-Johan Klasse Mike Farzan John Moore James Riddell IV

Irina Grigorova James Moon Jianping Fu

