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Planned Technical Group Activities

Our activities include:

* Special sessions at leading OSA conferences. We had a successful panel discussion at OSA FiO 2015.
* Webinars. We have planned about 3-4 webinars for 2016.

* Proposal on a journal special issue covering PD activities.

* Interaction with local sections and student chapters. We are in the process of setting this up.

* Proposal for the creation of student poster awards at OSA meetings.

* Road map towards solving outstanding research problems.

Outreach:

* Regular communications (distribution list announcements and listservs)
* Create and maintain an active/engaged social media/networking functions (e.g., SharePoint, Google Plus,
Twitter, Facebook, and/or LinkedIn).



Detecting photon with superconducting
detectors from millimeter-wave to gamma-ray
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Superconductivity

* Electrical resistance goes to zero at
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Operating at T<<Tc, it is like a “semiconductor” with extremely small gap 6




Why superconducting detectors
» Low noise
* Johnson noise: 4kTR
» High sensitivity, low cutoff frequency
* Superconductor gap ~1 meV v.s. semiconductor gap ~1eV
* We are effectively using a ruler with finer mark.

» In quantum picture, most detectors works by counting some kind of
guanta (e.g., phonons or electron excitations) in a system.
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Superconducting v.s. conventional detectors: an example

Energy-dispersive gamma-ray detectors

conventional
- Semiconductor
detectors
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Superconducting photodetectors — by wavelength
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Superconducting detectors - by mode of operation

» Bolometer - measuring power

A TN\

» Calorimeter — counting photons

* Energy not resolved
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Superconducting detectors — by technology

» Superconducting tunnel junction detector (ST)J)
» Superconducting nanowire single photon detector (SNSPD)
» Superconducting transition edge sensor (TES)

» Microwave kinetic inductance detector (MKID)

Most of the detectors shown in this talk are developed at NIST (Boulder)
Quantum Sensors (Joel Ullom): MM, THz, X-ray, Gamma-ray TES and MKID
Single Photonics and Quantum Information (Sae Woo Nam): NIR, optical TES and SNSPD
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Superconducting tunnel junction detector (STJ)

X-ray Photon " .
Al203 .
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Analogous to a semiconductor detector

Energy resolving

Al — AlOxide — Al junctions

JJ not popular as detector — hard to scale to a large array
building block for SQUIDs and quantum bits (qubits)



Superconducting nanowire single photon detector (SNSPD)

Thermalization of

quasiparticles and Hot-spot diffusion and

superconductivity suppression
) \

r S—

Current density Is _ Resistive region is
above the critical Normal region formed across the film
isjg:med

* NDbN, Wsi, ... 4nm thick, <50nm wide
e Current bias, voltage pulse
* Photon counting, but not energy resolving

e Fastest superconducting detector, ~50ps jitter 13



Transition Edge Sensors (TES)
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TES bolometer for cosmic ray background (CMB)

NIST dual polarization TES for ABS, SPTPol, ACTPol Feedhorn array
NIST planar OMT .

TES: AlMn (Tc~500mK), MoCu B-mode polarization in the CMB is a signature of gravity
(Tc~150mK), feedhorn-coupled waves and the energy scale of inflation.
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2. lensing

B-mode lensing
detected SPTPol
(using NIST TES
detectors) in 2013
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TES for THz imaging

AS0 GHz Video imager

 TES: Al (Tc~1.2K), feedhorn-coupled

e Passive thermal imaging at 350GHz

* 17 m standoff distance

6 fpsvideo for live imaging

* 1 cm spatial and 0.1 K temperature resolution

Temperature Offset (K)

Credit: Dan Becker

Application - Security




Visible/IR single photon counting TES
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TES: W (Tc~100 mK), fiber coupled
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Application — Quantum information

_Anti-reflection coating

: Ti film
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Photon Number Resolution

e >95% end-to-end measured
efficiency at 1550nm
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. 240_TES instr

e

X-ray TES, MoCu 100mK, Au or Bi

TES X-ray spectroscopy

Application — Material analysis
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TES y-ray spectroscopy

TES: MoCu (Tc~150mK), Sn absorber

2

=)
HPGe counts/75 eV bin

Microcal counts/10 eV bin
X
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Energy (keV)

TES y-ray spectroscopy: high res., fast, in-situ

Application — Nuclear material analysis to replacing mass spectrometry: slow, destructive 19




TES readout and scaling to large arrays

bias wire + SQUID readout wire

Column
outputs: =

Column | Column 2

Each
colored
block is
1 pixel

Row address
currents:

Time Domain SQUID Multiplexer

Largest TES instrument
SCUBA-2: 10,000 TES
TDM readout, still >2500 wires

_‘_.,i__s________.s/ o
o 4
P —
= .\ _— /

e Currently TDM, FDM, CDM
utilizes MHz bandwidth

To scale to large detector array

* Less wires

e More bandwidth

— Microwave readout

20



Microwave Kinetic Inductance Detectors (MKIDs)

* Kinetic Inductance of superconductor

e Use superconducting resonators to sense quasiparticles

V S21=Vo/V4
out 0
1 1 2
hy E
S,
Li =
q c/_‘)\I
Al, Nb, .. 3 Lm
-10

CPW: coplanar waveguide Invented by J. Zmuidzinas and H. Leduc at Caltech/JPL in 20001



Frequency domain multiplexing
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Broadband low-noise amplifier

GHz bandwidth, 1000s of MKIDs needs one HEMT and one pair of coaxial cables!
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TiN film ideal for MKID

Advantages:

High kinetic inductance (100 times Al)
Low loss, Q;>10

High normal resistivity, p,~ 100 pQ-cm
Tunable Tc (0 — 5K)

-> responsivity
-> multiplexing
-> good absorber
-> gap engineering

Te (K)

Leduc, etal, APL 97, 102509 (2010), Vissers, etal, APL 97, 232509 (2010)

)

-

TiN tunability

| | = o
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uniformity comparison
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= RTTiN - 1.0
m L J
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0.9
£ |
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1/ h
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Position (cm)

Credit: Mike Vissers
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TiN MKID photon counting at 1550 nm

2012 2016
TiN
Al
TiN, Tc~0.9K, AE ~ 0.4 eV TiN/Ti/TiN, Tc~1.4K, AE ~ 0.25 eV
0 ' ' S | | | —fitted curve|
200} 03 S |
£ 150t
S 100 ngphogton‘évent
50t
o 4

0 2

O.F. pulse height (A/A )
Credit: Yiwen Wang (unpublished)

J. Gao et al., APL 101, 142602 (2013) Southwest Jiaotong University, China 24



Feedhorn-coupled MKID polarimeters/bolometers

* Feedhorn-coupled, dual-
polarization sensitive.

(a)

microstrip
feedline

IDC

-~~~ = ~ radiation

- - — — ——

Feedhorn

inductor strips

Si cutout for
-backshort
(SiO, removed)

______ -

SiO,
interface

* Dual polarization

Inductive
Antennae

v 1111 M 1 EAELELELELE
{ Channel Y

IDC

Waveguide
Footprint

Channel X
IDC

1

€— (oupling IDC =——>

Microwave Feed Line

in out
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Lab test using blackbody source

coax out

DETECTOR WAFER
100mK ADR stage
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Detector sensitivity

* Lab blackbody load test has demonstrated photon-noise limited sensitivity
at 1.2 THz (250 um).

* Response to THz photon * Photon (shot) noise  Excellent cross-pol rejection
s ~—a Antel-nnax
| : *—e Antenna Y
5| |—1392W :
| =22 aW 08
) | ——657 aW g
2 10} | 6fW | : 3
r'q___.- ! W { £ EUE
o || et l =
=151 | 148 fw " 804
| 270w “ &
=20} | 436 fW
| —— 646 W o
-25! . i : i . i
53222 53224 53226 53228 10 b 1&* 11:':-"‘ s . i
TG Fregquency (He)
Credit: Johannes Hubmayr Hubmayr et al, APL 106, 073505 (2015).
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MKID array fabrication

* New “tiling and trimming” layout/fabrication scheme efficiently uses the stepper
to produce arbitrary-size (hnumber of pixels, wafer size, pixel placement) high
quality MKID arrays

template T | | ‘
pixel tile | N |
' L |
i | \ |
feedline _| eeo ‘ ‘ ‘
winding tiles . L m |
| ‘ |
+ | ‘ |
IDC triming | | |
mask | ‘ |

MKID array design kit
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MKID arrays for BLAST

V
____‘" 250um array .

3 rhombuses, 306 pixels/rhombus

1812 MKIDs
Credit: Chris Mckenney
20 T T T
)
z |
2 | ‘ 1 I
‘\.'__‘._10 i
o N1 R
RN 1
: LR Rhombus A
|
0 | 1 | | 1 |
0.6 0.7 0.8 09 1 1.1

Frequency [GHz]

- Yield close to 100%, 20% collision (5 bandwidth exclusion)

- Qi ~500k@50mK, Qi ~ 40,000 under 17pW loading
29



MKID polarimeters for BLAST-TNG

 BLAST: Balloon-borne Large Aperture Submillimeter Telescope

- 1.8 m mirror

- feedhorn coupled

- 3 arrays, 250, 350, and 500um
- study star formation

- PI: Upenn + collaborators

270 NTD detectors  BLAST + Single Pol. 3000 MKID Dual —pol detector
2006 2010 2017

30



Research frontier

» Better performance

* Nanowire: higher efficiency, photon number resolving, multiplexing
e TES: faster, better NEP or energy resolution
 MKID: better NEP or energy resolution

» Scaling to larger detector arrays: 1-1000 => 100,000 - 1M pixels

]0251II1II1| T | i T I'I1II'I'I| T 3

2. lensing 3

i—— Detected by SPTPol in 2013

2 =]
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b7/ Mg

Gop ™™g

[I(+1)C/2m]12 (LK)

To detect the Primordial B-mode signal, CMB4 project

2 £. waves

S i proposes 500,000 detectors (multiple arrays) deployed
il .m&h ST : * i i
o = o on multiple telescopes to jointly observe for 3 years!!!

l

* Fabrication: 3-4 inch -> 6 inch wafer
e Readout: TDM -> microwave readout

* Refrigeration: more compact size, larger cooling power, lower cost
31



