Practical Meta-Surface Design for Polarization Optics

Featuring Lieven Penninck, PlanOpSim NV 22 February 2022

Technical Group Executive Committee

Chair
Dr. Hossein Alisafaee Assistant Professor of Physics and Optical Engineering,
Rose-Hulman Institute of Technology,

USA

Vice-Chair
Dr. Jing Zhou
Professor at the
State Key Laboratory
of Infrared Physics,
Shanghai Institute
of Technical Physics
of Chinese Academy
of Sciences

Exec Committee
Dr. Lu Lu

Research Manager,
Facebook Reality
Labs,
USA

Exec Committee Dr. Behzad Khajavi Postdoctoral Fellow at Harward Medical School

Exec Committee
Dr. Yunyao Zhang Assitant Professor, Northwest University, China

About Our Technical Group

Our technical group covers all aspects of polarization management and propagation in lightwave devices and systems, including theory, engineering, measurement, testing and imaging. Additionally, applications of polarization, methods of modeling and propagation will be included.

Our mission is to connect the 1200+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Special Talks at Frontiers in Optics
- Webinars on Modeling Polarization for Phase Retrieval and Optical Beams with Spatially Variable Polarization

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at www.optica.org/FP
- On LinkedIn at www.linkedin.com/groups/7467212/
- Email us at TGactivities@optica.org

Today's Speaker

Lieven Penninck PlanOpSim NV

Lieven Penninck is an expert on optical modelling methods focusing on meta-surfaces and nano-photonics. In 2019 he founded PlanOpSim to develop and offer numerical simulation software for the design of metasurfaces, metalenses, and planar optics. Aside from software development, PlanOpSim also provides optical design services to the photonics and optics industry. He holds a PhD in Photonics Engineering on development of simulation methods for OLED and liquid crystal devices. Outside of academia he worked on LCD display R\&D and simulation and measurement of OLEDs and solar cells in various roles.

Practical meta-surface design for polarization optics

OPTICA Webinar:

Polarization Management and Propagation

Today

Future: Nano-enabled components

Higher Performance Miniaturized
Simplified
New Applications

PlanOpSim

Planopsim's mission

 Planopsim supplies R\&D tools to engineers \& scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.* Computer Aided Design software for Planar Optics \& metasurfaces
>All-in-one design workflow
* Design service for metasurfaces and photonics
$>$ In-house and 3^{d} party tools

Who are we?

* Dedicated provider of:
>Simulation software for meta-surfaces
>Designhouse for photonic \& optical applications
* Start-up from Ghent; Belgium
* Photonics R\&D experience in industry and academia:
> Simulation
> Fabrication
> Measurement
* Supported by:

וlוec

 istart
Outline

* Meta-surfaces
>Principles
>Nanostructures
*Practical Examples
>Library building
>Wide angle polarizing beamsplitters
>Multiplexed holograms
>Polarization splitting lenses

Meta-materials

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* Materials with engineered properties:
$>$ Design internal structures to create external properties
* EM waves: 3D sub-wavelength structuring
* 3D metamaterial
> Very challenging to fabricate
* Let's make 2D instead

Low-Tech
Metamaterial

High Tech
Metamaterial
$\lambda=1.55$ um (0.19 PHz)
\rightarrow Meta-surface
$>$ Sub-wavelength structure on a substrate
> Few nano-structuring steps

* Many elements side-by-side
$>$ Pseudo-periodic: regular grid but the elements are not all the same
> Sometimes irregular

Why use meta-surfaces?

Principles of meta-surfaces

Ray picture

Wave picture

* Any component works by re-arranging the wavefront of the incoming waves
* Meta- atoms locally control exit phase and amplitude

>Any profile can be reproduced
>Including difficult shapes: aspheric lenses, arrays

Why is this new?

BMOKINDTYDIT

W: CTITDTHISA Difiniomeoricililn:II

* Classical DOE:
>Control phase by material height
* Phase sampling:
>DOE -> greyscale or multi-layer lithography
>Meta-surface: single lithography step
* Metasurfaces are DOEs + extra functions:
>Polarization selectivity
>Tuned spectral response: a- or hyper chromatic
$>$ Combined functionalities
$>$ Sub- λ pitch
$>$ Non-linear and/or topology effects

Multi-functionalization

* Different functionality by area
$>$ Sectoring or interleaving
$>$ Efficiency $\sim 1 / \#$ functions
* Overloading: same structure multiple functionalities

$>$ Parametrized or inverse design
$>$ High efficiency multi-functionality is possible

D. Sell, J. Yang, S. Doshay, and J. A. Fan, "Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities," Adv. Opt. Mater. 5, 1-7 (2017).

Limits of functionalization

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* There is no free lunch!!
* Physical limits being discovered:
$>$ Bandwidth, size and function are connected

Application parameters
> Bandwidth
Design parameters: $\Delta \Phi$

Diameter
$>$ Structure: Height + aspect ratio
> Spatial frequency, NA
$>$ Complexity: multi-layers

Literature devices within bounds of theoretical formula*

*F. Presuttiand F. Monticone, "Focusing on Bandwidth:
Achromatic Metalens Limits," Optica 7, (2020).)

Sub-wavelength structures

Plasmonic structure

Dielectric structures

Structural birefringence

Metallic nanorod

* Antenna shapes expanded from classical antennas
* Historically first but limited in application
> Lossy
> Only efficient in reflection

Dielectric structures

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* Dielectric sub-wavelength structure $>$ Act as an effective medium
>Waveguide view
$>$ Resonator
$* \mathrm{n}_{\text {gap }}<\mathrm{n}_{\text {effective }}<\mathrm{n}_{\text {material }}$
$>$ Dielectric: $\mathrm{Si}, \mathrm{SiN}, \mathrm{TiO}_{2}$
>Gap: air or low index material
* Phase \& amplitude tuning:
$>$ Height
>Geometry: Cylinders, Squares, Hexagon, Cross >Complex shapes:
- Genetic algorithms
- Adjoint optimization

Polarization manipulation

 WWW.PLANOPSIM.COM* Symmetry:
$>90^{\circ}$ symmetric: no change for TE/TM
>Non-symmetric: polarization selectivity
* Structural birefringence (form birefringence)
$>$ Different $\mathrm{n}_{\text {eff }}$ for x / y polarization
$>$ Acts as a an optical retarder with in plane c -axis
* Tuning the shape
>Change $\Delta \mathrm{n}$
>Rotation alters phase
* Applications:
>Polarization functionalization
>Geometric phase

TM phase

Geometric phase

* Incident circularly polarized light
* Jones calculus of structurally anisotropic element

Half wave retardation

$$
\begin{gathered}
\overline{\bar{T}}_{H W P}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
\overline{\bar{T}}_{H W P}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right] \quad \text { Rotation of } \mathrm{c} \text {-axis }
\end{gathered}
$$

* Incident and Exitant Jones vector

$$
\begin{aligned}
& J_{\text {in }}=\left[\begin{array}{c}
1 \\
+j
\end{array}\right] \quad J_{\text {out }}=e^{j 2 \theta}\left[\begin{array}{c}
1 \\
-j
\end{array}\right] \\
& \begin{array}{l}
\text { Rotation controlled } \\
\text { phase }
\end{array} \\
& J_{\text {in }}=\left[\begin{array}{c}
1 \\
-j
\end{array}\right] \quad \text { Half wave retardation } \\
& J_{\text {out }}=e^{-j 2 \theta}\left[\begin{array}{c}
1 \\
+j
\end{array}\right]
\end{aligned}
$$

Geometric phase

 WWW.PLANOPSIM.COM* Geometric phase structures
>Elegant phase control
$>$ Not limited to shapes or nano-structures
* Tuning the shape
>Dispersion corrections
> Amplitude corrections
 (conversion efficiency)
* Applications:
$>$ Polarization selective but not polarization controlling
$>\varphi_{L C P}(x, y)=-\varphi_{R C P}(x, y)$

Principles of meta-surfaces

Enlightened Planar Optics WWW.PLANOPSIM.COM

* Why sub-wavelength?
* Suppress diffraction:

$$
\frac{2 \pi n_{t}}{\lambda}<\frac{-2 \pi n_{r} \sin \left(\theta_{i n}\right)}{\lambda}+1 \frac{2 \pi}{P}
$$

* $\mathrm{P}<\lambda / \mathrm{n}$ only 0 -order diffraction possible

$$
P<\frac{n}{n_{r / t}+n_{r} \sin \left(\theta_{i n}\right)}
$$

* Normal incidence into air:

$$
P<\frac{\lambda}{n_{r}}
$$

Sampling

Spatial sampling

* Nyquist theorem: 2 samples per period
$\Varangle \frac{2 \pi}{P}>2 \frac{\delta \varphi}{\delta x} \quad \longrightarrow P<\frac{\lambda}{2 n \frac{\delta f}{\delta x}}$
Normalized gradient

Phase sampling

* In reality phase is continuous
* In a metasurface we sample the phase
* Wavefront aberration function $W^{\prime} F_{\text {RMS }}<\lambda / 14$

1) US 2018 / 0246262 A1, low - contrastSilicon Nitride based metasurtaces
2) F. Aieta, et. al, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express, vol.

21, no. 25, p. 31530, 2013.
3) Huang, K. et al. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. Adv. Mater. 30, 1-22 (2018).

Practical effect

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* Equal wavefront, changed phase sampling
* Diffraction limited lens for 1064nm

$$
N A=0.164
$$

* Better sampling $=$ higher efficiency
* Saturation from 16 levels

Spatial and phase sampling combined

* Diffraction limited lens for 1064nm (NA=0.164)
* Spatial sampling often a stronger requirment than sub-diffraction requirement

$$
P<\frac{\lambda}{2 N A}=\frac{\lambda}{2 \sin \left(\theta_{\text {out }}\right) n_{t}}
$$

* High efficiency reached only when spatial and phase sampling are sufficient

* Which wavefront do we need?
* Analytical:
>Aspheric lens: all rays constructively interfering >Orbital angular momentum beam
>Bessel beam: axicon

Orbital angular momentum

Aspheric lens

$$
\varphi(\lambda)=\frac{2 \pi}{\lambda}\left[\sqrt{r^{2}+f^{2}}-f\right]
$$

$$
\begin{aligned}
& \text { sel beam } \\
& \varphi(\lambda)=-\frac{2 \pi}{\lambda} \sin (\theta) r .
\end{aligned}
$$

Ray tracing

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* Analytical calculation only possible in simple systems
* Realistic situations:
> Multiple specifications
> Multiple components
* Optimize wavefront in ray tracing > Parametrized wavefront description
> E.g. ZEMAX binary surface

$$
\Phi=M \sum_{i=1}^{N} A_{i} \rho^{2 i}
$$

* Advantages:
> Co-optimization of multiple metasurfaces
> Investigate complex performance trade-offs
* Disadvantage:
> Idealized wavefront

2 meta-surface system

System MTF vs. field angle

Hybrid meta-surface + refractivesystem

Sagittal MTF

$$
\text { —zemaxo -zemax } 10.5
$$

$$
\text { —zemax } 21 \text { —Zemax } 31.5
$$

$$
\text { .-.---Kernel0 } \quad \text { Kernel } 10.5
$$

$$
\ldots \text { Kernel } 21 \quad \text {-.----Kernel } 31.5
$$

From wavefront to meta-surface

PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM

* Wavefront optimized in ray-tracing
* Reproduce as meta-surface
* Example for Si pillars @940nm
> Nanostructure Transmission efficiency 76\% (NFWF efficiency)
> Focusing Efficiency 57\% (FFWF Efficiency)

Meta-component simulation

Computer Generated Holography

IFTA flow M
M

* Computer Generated Holography:

$>$ Most general \sim least performant
>Iterative Fourier Transform Algorithm
>Phase- only or phase amplitude

* Meta-surface vs. other holograms:
> Polarization multiplexing
$>$ Wide angle due to small pitch
>Phase sampling levels

Outline

* Meta-surfaces
>Principles
>Nanostructures
*Practical Examples
>Library building
>Wide angle polarizing beamsplitters
>Multiplexed holograms
$>$ Polarization splitting lenses

Beamsplitter: library building

* Library:
> 1 litho step: height and unit cell same
> Design wavelength: 633 nm
> Material platform:
- TiO2 on SiO2
* Determine working point:
> Fixed structure modify height (H) and pitch (P)
> Pitch $=400 \mathrm{~nm}$ sufficient to avoid diffraction

T/0,0/LCP/power_coeff/Abs (-)

* Multiple structures: width varied
> Fixed pitch: 400nm
* Max. T, 360° phase coverage
* Selected height:
\gg425 nm to cover phase for nonpolarizing meta-surface
> Following examples: 800nm

Selected height

Beamsplitter: library building

* Polarization effect-> symmetry breaking
* Cover all pairs : $\varphi_{\text {TE }}, \varphi_{\text {TM }}$
* 1 dot $=1$ structure

$\mathrm{H}=600 \mathrm{~nm}->38 \mathrm{k}$ structures

$P=300 \mathrm{~nm}$

$P=350 n m$

$P=400 n m$
* Library selection: 16x16 structures
* 3 different pitches: 300, 350 and 400nm
* 1 dot $=1$ structure

Transmission grating

* Classical beamsplitter:
> Separates TE and TM polarization
$>90^{\circ}$ split angle
* Blazed grating: 1 deflection direction
* Combined functionality
> Custom: narrow or wide splitting angle
> Arbitrary splitting direction of TE and TM
* Convert parallel to oblique wavefront:
$\varphi_{T E / T M}=-\frac{2 \pi}{\lambda} * \sin \left(\theta_{T E / T M}\right) * \mathrm{x}+\mathrm{C}$

Beam splitter:

* Diffraction efficiency: $>80 \%$ in 1° around target
* Angles not in same plane
* Custom angle $>\operatorname{TE}(55,60)$ TM (35,-100)

Diffraction efficiency v, angle for TE polarization 83.8% in target Diffraction efficiency vs. angle for 90° TM polarization 81.8% in target

Beam splitter:

*With sufficiently small pitch, splitting angle up to 175°
*Target phase reproduced with some deviation

Pitch (nm)	Theoretical cut off	Simulated cut- off
400	$104,6^{\circ}$	104°
350	$129,5^{\circ}$	127°
300	None	None

Multiplexed hologram

* Hologram images
> Wide angle: 18°
* Design wavelength 633nm
$>\mathrm{TiO}_{2}$ on SiO_{2} structures
> Library from previous example
* Meta surface:
$>$ Size: $2 \times 2 \mathrm{~mm}$ (25M meta-atoms)
> Projection distance: 1 m

Multiplexed hologram: step by step

 WWW.PLANOPSIM.COM

Resulting image

Co-optimized for 2
wavefronts

Multiplexed hologram: results

-2
PlanOpSim
Enlightened Planar Optics WWW.PLANOPSIM.COM Simulated image TM

* High efficiency:
> 16 level phase only

	Image RMSE	Wavefront error (RMSE)	Efficiency
TE	3.3 e-8	0.1	91%
TM	$2.5 \mathrm{e}-8$	0.1	89%

* Both images produced simultaneously

$$
\square \sin (\theta)=\frac{\lambda}{2 P}=52^{\circ}
$$

Simulated image TE

Simulated intensity at 10000.0 mm , efficiency $=92$ O.

Focusing polarizing beamsplitter

* Design for 1,55 $\mu \mathrm{m}$
* Cross structure:
> X-arm influences TM polarization (mostly)
> Y-arm influences TE polarization (mostly)
* Meta-atom library:
> 8 X 8 sampling of TE/TM phase

Focusing polarizing beamsplitter

 WWW.PLANOPSIM.COM* Analytical phase profile: diffraction limited lens
* Independent targets
> TE: focal distance 500μ mand shifted left $50 \mu \mathrm{~m}$

$$
\begin{aligned}
& \varphi_{T E}=\frac{2 \pi}{\lambda}\left(-f+\sqrt{f^{2}+y^{2}+(\boldsymbol{x}+\mathbf{5 0})^{2}}\right) \\
& \varphi_{T M}=\frac{2 \pi}{\lambda}\left(-f+\sqrt{f^{2}+y^{2}+(\boldsymbol{x}-\mathbf{5 0})^{2}}\right)
\end{aligned}
$$

* Weighted optimization for TE and TM target
* Indiviual targets recognizable in the layout

Example structures

Focusing polarizing beamsplitter

TE incidence

TM incidence

* Simulated Intensity profile at $\mathbf{f}(500 \mu \mathrm{~m})$
* TE and TM polarization separately focused
* Transmission efficiency: 89.2\%
* Spot efficiency: 65.1\%
* Ratio TE/TM 2250:1 in focal point > Commercial polarizing beamsplitter cube >1000:1

Circular Polarization (R) incidence

Metasurface platform

Wavefront control

Engineered reflection \& transmission Coating free high power optics

Spectrum \& polarization control

Miniaturized \& Low weight

Low material consumption

* Meta-surfaces allow a path to previously "impossible" components
* A library of sub-wavelength structures is available to control polarization response independently of 2 orthogonal polarizations
* Examples Applications for miniaturized and simplified polarization optics
$\%$ Simulation tools are essential to bring this technology from the lab into the industry
\# www.planopsim.com
Q info@planopsim.com

Supported by:

AGENTSCHAP INNOVEREN \& ONDERNEMEN

