QCL-Based Sensors for Chemical Kinetic Applications

Presented by:

OSA Laser Systems Technical Group

Technical Group Leadership

Robert Ian Woodward Macquarie University Events Officer (US and Asia Pacific)

Pengda Hong Onyx Optics Events Officer (US)

Katia Shtyrkova MIT Events Officer (US)

Moran Chen

Fibertek, Inc.

Webinar and Social

Media Officer

Xuewen Shu Huazhong Xiaoming Shang Candela Corp Webinar and Social Media Officer Xuewen Shu Huazhong Univ of Science and Technology Webinar and Social Media Officer

Yanchun Yin University of Central Florida Webinar and Social Media Officer

Laser Systems (PL)

This group encompasses novel laser system development for a broad range of scientific, industrial, medical, remote sensing and other directed-energy applications. The group addresses technical issues concerning sources that cover the full spectral range, including: ultraviolet, visible, infrared, terahertz and microwave. Strong overlap with other technical groups that study and develop laser techniques and technologies brings together researchers and engineers to produce sources with unique performance, such as high-power, ultra-short pulses and high coherence.

On-Demand Laser Systems Webinars

You can watch any of the following webinar presentations, which were hosted by the OSA Laser Systems Technical Group, on-demand.

- From Semiconductor Nanolasers to Photonic Integrated Circuits
- III-Nitride Nanowire Light-Emitting Diodes Grown by Molecular Beam Epitaxy
- InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

Announcements

Upcoming Applied Optics Feature Issue

The Laser Systems Technical Group will be organizing a feature issue of *Applied Optics* on near- to mid-IR (1-13 µm) III-V semiconductor lasers.

This special issue will focus on recent advances in the field of III-V semiconductor lasers emitting in the near- to mid-infrared spectral regions, with particular emphasis on devices that emit radiation with wavelengths between 1 and 13 µm.

Submissions for this feature issue will be accepted from 1 May2017 until 1 June 2017.

Learn more >>

GROUP LEADERSHIP	UPCOMING MEETINGS	RECENTLY PUBLISHED	
Name	Affiliation	Title	
Fatima Toor	University of Iowa	Chair	
Gleb Vdovin	TU Delft	Events Officer (Europe)	
Haining Yang	Roadmap Systems Ltd	Events Officer (Europe)	
Shyh-Lin Tsao		Events Officer (US and Asia Pacific)	
Robert lan Woodward	Macquarie University	Events Officer (US and Asia Pacific)	
Pengda Hong	Onyx Optics, Inc.	Events Officer (US)	
Katia Shtyrkova	Massachusetts Institute of Technology	Events Officer (US)	
Shamsul Arafin	University of California Santa Barbara	Vice Co-Chair	
Silvano Donati	Universita degli Studi di Pavia	Vice Co-Chair	
Moran Chen	University of Virginia	Webinar and Social Media Officer	
Xiaoming Shang	Candela Corp	Webinar and Social Media Officer	
Xuewen Shu	Huazhong Univ of Science and Technology	Webinar and Social Media Officer	
Yanchun Yin	University of Central Florida	Webinar and Social Media Officer	
Tong Zhou	Lawrence Berkeley National Lab	Webinar and Social Media Officer	

Join our Online Community		
Linked in.		
Find us on f		
Work in Optics		
Sr. Electrical Engineer – Digital Design Lasertel Inc Wed, 26 Apr 2017 17:30:00 EST		
Technical Project Leader - New Products Development 08873 Tue, 25 Apr 2017 15:55:00 EST		
OPTICAL ENGINEERING TECHNICIAN CHECKPOINT TECHNOLOGIES Tue, 11 Apr 2017 18:31:00 EST		
Search Jobs »		

Contact your Technical Group and Get Involved!

- LinkedIn site (global reach)
- Announce new activities
- Promote interactions
- Complement the OSA

Technical Group Member List

Welcome to Today's webinar!

OCL-BASED SENSORS FOR CHEMICAL KINETIC APPLICAITONS WEBINAR

29 November 2018 • 10:00 EST

OSA Systems Technical Group

OSA Systems Technical Group

Aamir Farooq Associate Professor, KAUST

QCL-Based Sensors for Chemical Kinetic Applications

Laser Systems Technical Group Optical Society of America (OSA) Nov 29, 2018

Aamir Farooq

Mechanical Engineering Program

Clean Combustion Center (CCRC)

King Abdullah University of Science and Technology (KAUST)

Chemical Kinetics and Laser Sensors Laboratory

Principal Investigator: Prof. Aamir Farooq Clean Combustion Research Center (CCRC) King Abdullah University of Science and Technology

www.kaust.edu.sa

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - 1. Chirped-laser sensor for temperature
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - 3. Comb-assisted spectroscopy of N_2O

Growth in Population

- Predictions and forecasts are always tricky...
- It is important to take a long-term view

Growth in Energy Consumption

50% increase by 2050
2x increase by 2080

GHG Emission?

What we need for power sector?

Filling this need requires a portfolio of technology

Wind, solar, nuclear, combustion

What we need for transport sector?

- Electric vehicles
- Hybrid vehicles
- Combustion vehicles

Liquid fuels (surely) for:

- > Airplanes
- ➤ Marine
- Heavy transport / trucks

US DoE Prediction

Future Energy Challenges

- GHG emissions, pollution and NOx
- Extremely high-pressure combustion
- Low-temperature combustion
- Gasoline, diesel, jet, bio and synthetic fuel modeling
- Soot and PAH production
- HCCI / PCCI engine modeling
- Reduced mechanisms / CFD modeling
- > Aerosol physics, heterogeneous chemistry

All problems require a better understanding of Fundamental Fuel Chemical Kinetics Enabled by Shock Tubes, RCM, and Laser Diagnostics

Chemical Kinetics in ST and RCM

- □ ST and RCM are 'ideal reactors' to study fuel chemistry
- Coupled with laser diagnostics, these reactors can be used to study fundamental reaction kinetics
- Laser sensors must be developed to address specific chemical kinetic questions

Spectroscopy to Kinetics...

NH₃ in H₂O Measured Absorbance Voigt Fit X = 2.3% Absorbance 0.75 Galatry Fit T = 296 K L = 19.9 cm0.5 P = 2.0 torr 0.25 0 Measured - Fit 0.01 0 -0.01 0.01 -0.011103.35 1103.4 1103.45 1103.5 1103.55 Frequency (cm⁻¹)

Laser sensors

Chemical kinetics

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - 1. Chirped-laser sensor for temperature
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - 3. Comb-assisted spectroscopy of N_2O

Shock Tube Facility

- Heating/pressurizing gases through shock wave.
- T₅/P₅ determined from shock wave velocity measurement (1-D normal shock relations).
- Conditions: $T_5 = 700 3000 \text{ K}$, $P_5 = 1 100 \text{ bar}$
- Test times: 100 μs to 10 ms

- Piston compression raises temperature
- Conditions: $T_C = 600 950$ K, $P_C = 10 40$ bar
- T_C determined from isentropic relations
- Test times: 1 200 ms

Many species, time scales, trace amounts, ...

- □ Chemical systems are very complex with many species
- Time scales vary several orders
- Concentrations vary over several orders
- Sensing challenges: spectral interference, time resolution, trace detection, multiple wavelengths, optical access, beam steering, thermal emission, scattering, window fouling, etc.

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - **1. Chirped-laser sensor for temperature**
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - 3. Comb-assisted spectroscopy of N_2O

Absorption Spectroscopy

- Absorption: non-intrusive, time-resolved, line-of-sight measurement
- Beer-Lambert relation:

$$\mathcal{T}_{v} \equiv \frac{I_{t}}{I_{o}} = \exp(-k_{v} \cdot L)$$

Spectral absorption coefficient

$$k_{\nu} = S(T) \cdot \Phi(T, P, \chi_i) \cdot \chi_i \cdot P$$

- **Quantitative determination of:**
 - **Species concentration (C**_i or χ_i)
 - **Temperature**, pressure
 - Velocity, mass flux

Mid-IR Wavelength Region

Mid-IR region provides greater sensitivity and selectivity.

Wavelength Agility of QCLs

DFB-QCLs can be used in three modes

Down-chirp Characterization

- Germanium etalon used to convert time domain to wavelength domain.

Intra-pulse down-chirp results in rapid and broad spectral wavelength tuning
 Laser line-width directly proportional to the chirp rate

R. Chrystie, E. Nasir, A. Farooq, Optics Letters 39 6620 - 6623

Temperature Measurement in RCMs

- □ Central core gas is assumed adiabatic because of creviced pistons
- Heat loss is modeled as an isentropic expansion
- In two-stage ignition, first-stage heat release causes heat loss characteristics to deviate from non-reactive case

Temperature measurements needed to understand the limitation of zero-D modelling and build multi-zone heat transfer models

Ratio of two absorption lines: a calibration-free T-sensing method

$$T = \frac{hc/k(E_2'' - E_1'')}{\ln R + \ln (S_2(T_0)/S_1(T_0)) + (hc/k)(E_2'' - E_1'')/T_0} \qquad R = \frac{Areal}{Area2}$$

Laser scan by current-modulation is generally slow (~ few kHz)

Chirped-QCL Temperature Sensor

R. Chrystie, E. Nasir, A. Farooq, Optics Letters 39 6620 - 6623

Temperature Measurement using CO

- **□** Two CO lines: 2046.28 cm⁻¹ (4.89 μm) and 2196.66 cm⁻¹ (4.55 μm):
 - o Fundamental band lines for high absorbance.

Optical Schematic

- □ Two QCLs aligned on a collinear path through the RCM
- □ MCT AC-coupled detector used at 500 MHz bandwidth

□ Both lasers were pulsed at 100 kHz (**10 µs** time period) at a fixed time delay.

 \Box Both laser pulses provide the same wavelength tuning range ($\Delta v \sim 2.8 \text{ cm}^{-1}$).

Measured spectra: CO-N₂ Experiments

- ➤ The sensor was initially tested on 1% CO-N₂ non-reactive mixtures
- CO line-shapes fit to a Voigt profile

Measured temperature agreed with isentropic calculation

Nasir & Farooq, Proc. Combust. Inst. 36 (2017)

➢ Intra-pulse down-chirp → Rapid, calibration-free temperature sensing
 ➢ First ever determination of temperature rise during 1st stage ignition

Nasir & Farooq, Proc. Combust. Inst. 36 (2017)

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - 1. Chirped-laser sensor for temperature
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - 3. Comb-assisted spectroscopy of N_2O

Investigation of LTHR Chemistry

- Low-temperature heat release (LTHR) is very important for
 - Controlling HRR in HCCI-like engines
 - Reducing end-gas temperature in DISI engines

- Investigation of LTHR chemistry should be done in dilute fuel conditions to suppress large temperature changes
- Highly sensitive diagnostics are needed for LTHR studies in rapid compression machines (RCMs)

Cavity-Enhanced Detection of CO

Develop a *pulsed* cavity enhanced (CEAS) diagnostic for RCM for increased sensitivity

- Utilize intra-pulse down-chirp of pulsed QCLs for cavity noise suppression
- Measure CO formation during 1st stage oxidation experiments in RCMs

Optical Scheme: Off-axis CEAS

100 kHz pulse repetition rate

Pulse width, chirp rate, line-width

- > QCL near 4.89 µm used at 100 kHz pulse repetition rate
- Spectral down-chirp / line-width varies with pulse duration

Pulse width, chirp rate, line-width

QCL from Alpes Lasers at 4.89 µm used in pulsed mode:
 100 kHz pulse repetition rate (10 µs time resolution)
 Spectral down-chirp rate varies with pulse duration.

□ 500 ns pulse duration was selected for RCM experiments

Gain Calibration and Detection Limit

- High reflectivity mirrors centered at 4.89 μm.
- □ Manufacturer specs: $R = 99.5\% \pm 0.2\% \rightarrow Gain factor: 200 \pm 95$
- □ Gain measured using known CO/N₂ mixtures.
- □ We found R = 99.25% ± 0.04% → Gain factor: 133 ± 8

CO Measurement in Fuel Oxidation

- Heat release suppressed with diluted fuel/air mixtures
 Peak CEAS absorbance used for CO mole-fraction bisto
- Peak CEAS absorbance used for CO mole-fraction history

Mixture:

0.2% n-heptane 4.4% O₂ 95.4% N₂

Nasir & Farooq, Optics Express 26 (2018)

CO Measurements Compared with Models

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - 1. Chirped-laser sensor for temperature
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - **3. Comb-assisted spectroscopy of N₂O** (in collaboration with Prof. Marangoni @ POLIMI)

DFB QCL vs EC-QCL

DFB-QCLs

EC-QCLs

- Fast tunability (MHz bandwidth)
- Narrow tunability range (1-2 cm⁻¹)

Low ouptut power (a few mW)

- Ultrabroad tuning range (> 100 cm⁻¹)
- High output power (> 100 mW)
- Almost full MIR coverage

THEY SUFFER FROM A BROAD EMISSION LINEWIDTH and FREQUENCY JITTER!

Sum-Frequency Generation Referencing

Starting point:

SFG:

Referencing:

$$v_{m} = f_{ceo} + mf_{rep}; v_{n} = f_{ceo} + nf_{rep}; v_{QCL}$$
$$v_{SFG} = v_{QCL} + v_{m} = v_{QCL} + f_{ceo} + mf_{rep}$$
$$f_{beat} = |v_{SFG} - v_{n}| = |v_{QCL} - (n-m)f_{rep}|$$

Objective: To perform, **for the first time with EC-QCLs**, precision spectroscopy with a comb-defined frequency axis

Experimental Setup

Feedback to the EC-QCL:

- via PZT;
- via AOFS

Lamperti et al., Scientific Reports 8 (2018)

Frequency Locking of EC-QCL

SLOW LOCKING, via piezo modulation of the EC-QCL

FAST LOCKING, via external acousto-optic modulation

Comb-calibrated Absorption Spectra

Precision Spectroscopy of P(18) Line

High pressure + dilution Stepped scan: 100 MHz spacing Voigt fitting SNR ~ 1000 Line centre reproducibility ~ 500 kHz

Low pressure + pure sample f_{rep}-tuning scan: 1.5 MHz spacing Gaussian fitting SNR ~ 1000 Line centre reproducibility ~ 47 kHz

NEARLY FLAT RESIDUALS

Alsaif et al., *JQSRT* 211 (2018)

Precision Spectroscopy of v₁ band of N₂O

Fully automated setup:

- Linelist upload from HITRAN
- EC-QCL tuning to the 1st line
- Comb locking of the EC-QCL
- Rep-rate scanning
- Spectral profile acquisition
- EC-QCL tuning to the 2nd line...

Uncertainty budget

Uncertainty source	Type A (kHz)	Type B (kHz)
Experimental reproducibility	10-170	
Laser line shape asymmetry		60
Pressure leakage		2
Pressure reading		0.5
Frequency scale uncertainty		0.5
Total uncertainty	62-180) kHz

Talk Outline

- Motivation for chemical kinetic studies
- Measurement challenges
- Case studies:
 - 1. Chirped-laser sensor for temperature
 - 2. Chirped-laser and cavity-enhanced sensor for CO
 - 3. Comb-assisted spectroscopy of N_2O

Research funding by Saudi Aramco and King Abdullah University of Science and Technology (KAUST)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

THANK YOU!