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 Motivation for chemical kinetic studies

 Measurement challenges

 Case studies:
1. Chirped-laser sensor for temperature 
2. Chirped-laser and cavity-enhanced sensor for CO
3. Comb-assisted spectroscopy of N2O



Growth in Population
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 Predictions and forecasts are always tricky…
 It is important to take a long-term view



Growth in Energy Consumption
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 50% increase by 2050
 2x increase by 2080 GHG Emission?



What we need for power sector?
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Wind, solar, nuclear, combustion



What we need for transport sector?
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Liquid fuels (surely) for:
 Airplanes
 Marine
 Heavy transport / trucks

• Electric vehicles
• Hybrid vehicles
• Combustion vehicles



US DoE Prediction
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Future Energy Challenges 
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 GHG emissions, pollution and NOx
 Extremely high-pressure combustion
 Low-temperature combustion
 Gasoline, diesel, jet, bio and synthetic fuel modeling
 Soot and PAH production
 HCCI / PCCI engine modeling
 Reduced mechanisms / CFD modeling
 Aerosol physics, heterogeneous chemistry

All problems require a better understanding of
Fundamental Fuel Chemical Kinetics

Enabled by Shock Tubes, RCM, and Laser Diagnostics



Chemical Kinetics in ST and RCM
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 ST and RCM are ‘ideal reactors’ to study fuel chemistry
 Coupled with laser diagnostics, these reactors can be used to 

study fundamental reaction kinetics
 Laser sensors must be developed to address specific chemical 

kinetic questions



Spectroscopy to Kinetics…
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Precision spectroscopy

Laser sensors

Chemical kinetics
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• Heating/pressurizing gases through shock wave.
• T5/P5 determined from shock wave velocity 

measurement (1-D normal shock relations).
• Conditions: T5 = 700 – 3000 K, P5 = 1 – 100 bar
• Test times: 100 µs to 10 ms
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13Shock Tube Facility



• Piston compression raises temperature 
• Conditions: TC = 600 – 950 K, PC = 10 – 40 bar
• TC determined from isentropic relations
• Test times: 1 – 200 ms

Start of CompressionEnd of Compression

14Rapid Compression Machine Facility



Many species, time scales, trace amounts, …
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 Chemical systems are very complex with many species
 Time scales vary several orders
 Concentrations vary over several orders
 Sensing challenges: spectral interference, time resolution, trace 

detection, multiple wavelengths, optical access, beam steering, 
thermal emission, scattering, window fouling, etc.

1500 K, 2 atm
300 ppm C7H16, φ=1
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Absorption Spectroscopy
 Absorption: non-intrusive, time-resolved, line-of-sight measurement

 Beer-Lambert relation:

 Spectral absorption coefficient

 Quantitative determination of:
 Species concentration (Ci or χi)
 Temperature, pressure
 Velocity, mass flux 
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Mid-IR Wavelength Region
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Mid-IR region provides greater 
sensitivity and selectivity.



Wavelength Agility of QCLs
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 DFB-QCLs can be used in three modes
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Down-chirp Characterization
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 Germanium etalon used to convert time domain to wavelength domain.

 Intra-pulse down-chirp results in rapid and broad spectral wavelength tuning
 Laser line-width directly proportional to the chirp rate 
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Temperature Measurement in RCMs
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 Central core gas is assumed adiabatic because of creviced pistons
 Heat loss is modeled as an isentropic expansion
 In two-stage ignition, first-stage heat release causes heat loss 

characteristics to deviate from non-reactive case

 Temperature measurements needed to understand the limitation of 
zero-D modelling and build multi-zone heat transfer models
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Two-line Thermometry
 Ratio of two absorption lines: a calibration-free T-sensing method

Laser scan across lines

 Laser scan by current-modulation is 
generally slow (~ few kHz) 
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Temperature Measurement using CO

24

 Two CO lines: 2046.28 cm-1 (4.89 µm) and 2196.66 cm-1 (4.55 µm):
o Fundamental band lines for high absorbance.

P = 10 bar, T = 700 K, L = 50.8 mm
HITRAN Simulation



Optical Schematic

 Two QCLs aligned on a collinear path through the RCM

 MCT AC-coupled detector used at 500 MHz bandwidth



Laser Time Multiplexing
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 Both lasers were pulsed at 100 kHz (10 µs time period) at a fixed time delay.

 Both laser pulses provide the same wavelength tuning range (Δν ~ 2.8 cm-1).



Measured spectra: CO-N2 Experiments

2713Nasir & Farooq, Proc. Combust. Inst. 36 (2017)

 The sensor was initially tested on 1% CO-N2 non-reactive mixtures
 CO line-shapes fit to a Voigt profile

 Measured temperature agreed with isentropic calculation



 Intra-pulse down-chirp  Rapid, calibration-free temperature sensing
 First ever determination of temperature rise during 1st stage ignition

Temperature Results: n-Pentane Oxidation

15

PC = 9.21 bar, TC = 742 K

ΔTexp < ΔTsim
τ2,exp > τ2,sim

Nasir & Farooq, Proc. Combust. Inst. 36 (2017)

ΔT= 130K ΔT= 170K

τ2,exp
3.96 ms

τ2,sim
3.06 ms



Talk Outline

29

 Motivation for chemical kinetic studies

 Measurement challenges

 Case studies:
1. Chirped-laser sensor for temperature 
2. Chirped-laser and cavity-enhanced sensor for CO
3. Comb-assisted spectroscopy of N2O



Investigation of LTHR Chemistry
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 Low-temperature heat release (LTHR) is very important for
o Controlling HRR in HCCI-like engines
o Reducing end-gas temperature in DISI engines

 Investigation of LTHR chemistry should be done in dilute fuel 
conditions to suppress large temperature changes

 Highly sensitive diagnostics are needed for LTHR studies in rapid 
compression machines (RCMs)



Cavity-Enhanced Detection of CO
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 Develop a pulsed cavity enhanced (CEAS) diagnostic for RCM for 
increased sensitivity

ACEAS = ln (I0 / It)  

 Utilize intra-pulse down-chirp of pulsed QCLs for cavity noise 
suppression

 Measure CO formation during 1st stage oxidation experiments in 
RCMs
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1. Off-axis alignment reduces cavity FSR
2. Frequency down-chirp provides further coupling

100 kHz pulse repetition rate



500 ns

311.9

 500 ns

 QCL near 4.89 µm used at 100 kHz pulse repetition rate 
 Spectral down-chirp / line-width varies with pulse duration

100 101 102 103 104
0

150

300

450

600

Time (ns)

Pulse Duration:
 100 ns

La
se

r L
in

e-
w

id
th

 ( M
H

z)

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

100 ns

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Time (µs)

Pulse width, chirp rate, line-width

8

d
dt
νν β∆ =



 5000 ns 72.6

 QCL from Alpes Lasers at 4.89 µm used in pulsed mode:
o 100 kHz pulse repetition rate (10 µs time resolution)

 Spectral down-chirp rate varies with pulse duration.

 500 ns pulse duration was selected for RCM experiments
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CO Measurement in Fuel Oxidation
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Mixture:
0.2% n-heptane
4.4% O2
95.4% N2
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 Heat release suppressed with diluted fuel/air mixtures
 Peak CEAS absorbance used for CO mole-fraction history

Nasir & Farooq, Optics Express 26 (2018)



CO Measurements Compared with Models
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n-heptane/O2/N2

φ = 1, P = 10 bar
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 Intra-pulse down-chirp + OA-CEAS  Highly sensitive, time-resolved 
measurements
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(in collaboration with Prof. Marangoni @ POLIMI)



DFB QCL vs EC-QCL
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• Ultrabroad tuning range (> 100 cm-1) 
• High output power (> 100 mW) 
• Almost full MIR coverage

THEY SUFFER FROM A BROAD EMISSION 
LINEWIDTH and FREQUENCY JITTER!

DFB-QCLs

• Narrow linewidth (~ 1 MHz)
• Fast tunability (MHz bandwidth)
• Narrow tunability range (1-2 cm-1)
• Low ouptut power (a few mW)

EC-QCLs



Sum-Frequency Generation Referencing
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1.2-1.7
μm

1.95
μm

Starting point: νm = fceo + mfrep ; νn = fceo + nfrep ; νQCL

SFG: νSFG = νQCL + νm = νQCL + fceo + mfrep

Referencing: fbeat = νSFG - νn= νQCL – (n-m)frep 

νm νnνSFG

νQCL

ννQCL

3-12
μm



Phase-locking of EC-QCL to a Frequency Comb
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Objective: To perform, for the first time with EC-QCLs, 
precision spectroscopy with a comb-defined frequency axis 

ν

EC-QCL

COMB

1. fixing the comb-QCL frequency offset 
2. transferring the coherence of the comb to 
the QCL (QCL line-narrowing)

3. dragging the QCL frequency by 
changing the comb spacing



Experimental Setup

43

Beat-note frequency 
detection

Feedback to the EC-QCL:
• via PZT;
• via AOFS

SFG

1.5-2.2µm

Supercontinuum

e(t)

Lamperti et al., Scientific Reports 8 (2018)



Frequency Locking of EC-QCL
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Linewidth Intensity noise

FAST LOCKING, via external acousto-optic modulation

SLOW LOCKING, via piezo modulation of the EC-QCL



Comb-calibrated Absorption Spectra
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First ever demonstration with an EC-QCL

STEPPED SCAN ν

COMB

+ INTERLEAVING

P25 doublet GAS SAMPLE: N2O
PRESSURE: 0.025 mbar
CELL LENGTH: 66 cm

ν

COMB

P18

100 MHz



Precision Spectroscopy of P(18) Line
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NEARLY FLAT RESIDUALS

High pressure + dilution
Stepped scan: 100 MHz spacing
Voigt fitting
SNR ~ 1000
Line centre reproducibility ~ 500 kHz

Low pressure + pure sample
frep-tuning scan: 1.5 MHz spacing
Gaussian fitting
SNR ~ 1000
Line centre reproducibility ~ 47 kHz

Alsaif et al., JQSRT 211 (2018)



Precision Spectroscopy of ν1 band of N2O

47

Fully automated setup:
• Linelist upload from HITRAN
• EC-QCL tuning to the 1st line
• Comb locking of the EC-QCL
• Rep-rate scanning
• Spectral profile acquisition
• EC-QCL tuning to the 2nd line...

Uncertainty budget

Uncertainty source
Type A 
(kHz)

Type B 
(kHz)

Experimental reproducibility 10-170
Laser line shape asymmetry 60
Pressure leakage 2
Pressure reading 0.5
Frequency scale uncertainty 0.5

Total uncertainty 62-180 kHz
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