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Welcome to Today’s Webinar!

Dr. Patrick Dupré, Université du Littoral Côte d'Opale
Patrick Dupré is a recognized expert in molecular high resolution and quantitative laser 
Spectroscopy. His career has included work in physics and chemistry laboratories in France, 
the United States, the United Kingdom and Germany. His interests include experimental 
spectroscopy and modeling. He is presently involved in developing Noise-Immune Cavity-
Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) for metrology 
applications and for trace gas detection in the Mid-InfraRed. Spectroscopy with high finesse 
cavity is an ideal tool for saturated absorption, i.e. under sub-Doppler conditions.
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Motivations

Ultrasensitivity, i.e., Trace Detection

Quantitative Spectroscopy of Gas (aerosol?)

Gas Metrology (OFC)

Line Shape Analysis

Compact Setups

Beyond the linear Absorption (Doppler-Free)

Ab-initio Molecular Calculation Benchmarking

Molecule Internal Couplings (like Hyperfine Couplings)

Physics Beyond the Standard Model (i.e., QED)

Challenging the Photon-Shot-Noise
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Cavity Enhanced Absorption Spectroscopy (CEAS)
Basic Idea: Enhancing the Absorption Length, i.e., the length of interaction
between light and analyte. How?

Multipass Cell

White Cell
Herriot Cell

Alternative: Resonators (using small Dichroic Mirrors, 1984)
BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy)
based on Broad Band sources (coherent or not): Arc Lamps,
Supercontinuum, LED, OFCS. It requires a Dispersive Detection

ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave,
Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)

Cavity Finesse measurement (in Frequency)
Cavity Impedance Mismatch (Ring)
FMS (Frequency Modulation Spectroscopy)
NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne
Molecular Spectroscopy)
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Background

The Absorption Beer-Lambert Law:

I (ω) = I0 e−α(ω)Labs

α (ω) =N σ (ω) is the frequency depending absorption coef. (in cm−1).

Approximation of the Optically Thin Medium [α (ω) Labs ¿ 1]:

∆I (ω) = I0 − I (ω)

I0
=α (ω) Labs

The Number Density (N in cm−3) is proportional to

the Gas Pressure
the Concentration of each specific species

The line absorption Crossection (σ (ω) in cm2/molecule), includes a
Normalized Lineshape (like a Voigt profile whose width is pressure
depending): ∫

σ (ω) dω=S

where S is the Line Intensity (in cm/molecule if ω is in cm−1).
S is available in the database like HITRAN (http://hitran.org/)
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Absorption in a Resonant Cavity

ADC
Computer

Detector

source

Labs

I0 I(w)

R R
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Main Features of a Symmetric Resonant Cavity

Cavity Finesse (Enhancement Factor)

F = 2π

L
= π

p
R

1−−−R
Free Spectral Range (FSR)

FSR = c

2Lcav

Response Time (or Characteristics Time)

τRD = F Lcav

πc
= F

2π
trt = 1

2∆cav
= F

2πFSR

Equivalent Absorption Length

Leq = 2F Lcav

π
= 2cτRD

Trapped Power

Icav === F
π
I in
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Formalism: Transfer Function (“Filter”) of a Lossless
Cavity

In the Frequency Domain

Iout (ω) = |Tcav (ω) ·Ein (ω)|2

with (obtained from multiple interferences

Tcav (ω) = T e−iωtrt /2

1+Reiωtrt
= T

1−R
∑

i

1

1+ i
(
ω−iωFSR
∆cav(ω)

)
and with

R′ =Re−α(ω)Labs

In the Time Domain

Iout (t) =
∣∣∣∣FT−1

[
Tcav (ω) ·Ein (ω)

]∣∣∣∣2
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Simulation: Pulsed Source



Simulation: CW Source



Absorption in a Resonant Cavity

Linear Absorption at resonance (occupancy factor = 1)

Alteration of the Characteristics Time (CRDS)

1

τRD (ω)
− 1

τ0
=α (ω) c

Alteration of the Detected Power

∆I (ω)

I0
=α (ω) Leq

NonLinear Absorption

α (ω, I)
Alteration of the Decay Shape (to nonexponential decay)
Lamb-dip, etc...
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Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

Signal (Cavity Enhancement factor: ∼F )
Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)√√√√ 2 e∆ν

η
〈

Peff

〉 === (
αLeq

)
min

CRDS is intrinsically Immune to Source Intensity Fluctuations
(discontinuous acquisition)

The “Direct” Absorption techniques require acquiring the Noise
Immunity

Differential Absorption (DAS)
Amplitude Modulation
Frequency/Phase Modulation (FMS)
Beam Intensity Stabilization (AOM)

NICE-OHMS benefits of both: CW acquisition, and full noise Immunity.
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NonLinear Absorption by CRDS

First demonstrated in 1999 (Saturated Absorption in jet cooled NO2),
Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

Then,

P. De Natale Group (Florence) in 2010 (CO2), Phys. Rev. Let. 104, 110801
S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

Applications:

High Resolution Spectroscopy
Simultaneous determination of the number density and of the
crossection, from a single decay (CRDS)!

Attention

Requiring full control of the Intracavity Power
Modeling of the Nonlinear Interaction
Data Weighting (according to the noise source, see CRDS)
Crossover Resonances
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Saturation in NO2 (with Fine and Hyperfine Transitions)
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Absorption versus Intracavity Power
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NICE-OHMS: History in a nutshell

Pioneerly developed at NIST (J. Hall, J. Ye), first publication in 1996 on
acetylene at 1.064µm (Nd:YAG/Ti:Sa), cavity finesse: ∼ 100000,
NEA ∼ 1×10−14 cm−1/

p
Hz

Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO),
more than 18 Publications (F ∼ 50000), NEA ∼ 4×10−13 cm−1/

p
Hz, Technical

Developments; 2017: Whispering-Gallery-Mode Laser

Since 2010: Ben McCall (UIUC, IL), Molecular Ion (Spectroscopy), Ti:Sa (Red), DFG
and OPO (MIR), Jet Expansion, cavities of modest Finesse

Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, Trace Detection

Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39µm (H2
18O), Metrology:

Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?

Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University,
CA), Metrology (Testing Lorentz Invariance, STAR Project)?

Since 2015: National Tsing Hua University (Taiwan), Quantum-Dot ECDL at 1.283µm
(N2O in Doppler), + CRDS, Atomic ParityNonConservation

Since 2016: Collaboration Dunkerque/Amsterdam (VU), Metrology of Hydrogen

Since 2017: Stefan Schäffer, Niels Bohr Institute (Copenhagen), MOT of 88Sr (locking
against transition)
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Saturation Modeling: an Insight

Establishing the complex absorption in the Frequency domain
(coupling of the EMF with the susceptibility) for a given Doppler Shift

Solving the Liouville Equation for a (2)-level system to obtain the
population and coherence terms of a specific sub-transition

Using a perturbative approach to solve the coupled system of equations

Applying the SVEA

Establishing the Linear Absorption

Establishing the Saturated Absorption (based on the Rabi Frequency)
Plugging specific EMFs (FMS) and considering the Stationary Response

Monochromatic (Radial Extension)
Gaussian (Impact Parameter)

Transit-Time Broadening (vs. Power Broadening)
Approximation based on the spectral extension of products involved (⊗, ×)

Numerical Integration over the Doppler Shift

Integration over the Impact Parameter

Integration over the Transit-Time Rate (Maxwell Boltzmann)

Summation of the Degenerated Zeeman Sub-Transitions (Polarization)
No Saturation Coefficient is used
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Simulation and Line Profile Analysis
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C2H2 NICE-OHMS Simulation (Absorption)
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C2H2 NICE-OHMS Simulation (Dispersion)
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C2H2 Simulation (Dispersion): Lorentzian Component
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Saturation Analysis: C2H2 Transition R(0) at 7143.8289 cm-1 (polyad 11)



C2H2 Simulation (Dispersion): Gaussian Component
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Saturation Analysis: C2H2 Transition R(0) at 7143.8289 cm-1 (polyad 11)
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Frequency Modulation in Cavity
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NICE-OHMS Implementation

Immersed Cavity
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Direct Absorption of C2H2 (P 11, ν1 +ν2 + (2ν4 +ν5)1 ← 0)
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NICE-OHMS “Absorption” of C2H2 (Polyad 11)
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NICE-OHMS “Dispersion” of C2H2 (Polyad 11)
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NICE-OHMS Dispersion of C2H2 (Polyad 11) with OFC
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Resonance Width Power Dependence
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Simulation of HD: First Overtone, Transition R(0)
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HD: 1st Overtone, Transition R(1)
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HD Hyperfine Structure according to N. Ramsey
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According to Ramsey and Lewis
    Phys. Rev. 108, 1246 (1957)
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Discussion on HD (Work in Progress)

New Transition Frequency: 217.105 181 891 (15) THz, <<< 1×××10−10,
(published value: 217.105 192 (30) THz [Kassi/Campargue JMS, 2011])

Improvement by 3 Orders of Magnitude

R(1), R(2), R(3) observed

Sensitivity ∼ 10−12 cm−1

Resonance Line Shape (Asymmetry)?

Mean Transit-Time Rate: ∼ 660kHz
Rabi Frequency (∼ 21kHz)?
Recoil (∼ 35kHz)?
Evidence of the Hyperfine Structure (spreads over 600 kHz)?

Pressure Broadening Coefficient?

Pressure Shift?

Comparison with CRDS (S. Hu group, in PRL)
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