Quantum integrated photonics

Edo Waks

Department of Electrical and Computer Engineering

University of Maryland College Park

Photonics is a powerful tool for quantum information

Sibson et al. *Optica* 4.2 (2017): 172-177.

Scalability requires photonic integration

Politi, A., et al., *Science* 325, 1221 (2009) O'Brien, J. L. *Science* 318, 1567 (2007) Elshaariet al., *Nat. Comm.* 8, 379 (2017) Wang, et al., *Nat. Photon* 11, 361 (2017)

Light doesn't naturally interact with light

Atoms mediate optical interactions

Quantum applications need single photon nonlinearity

Interaction Hamiltonian

$$\mathbf{H} = \hbar g \big(a^{\dagger} \sigma_{-} + \sigma_{+} a \big)$$

Atom coupling generates an anharmonic spectrum

Real systems suffer from decoherence

Atomic Cooperativity

$$C = \frac{4g^2}{\gamma\kappa}$$

High cooperativity modifies the cavity spectrum

E. Waks and J. Vuckovic, *PRL*. **96**, 153601 (2006)

High cooperativity generates strong photon-photon interactions

How do we reach high cooperativity?

High quality factors Small mode volumes

Quantum nanophotonic devices attain low photon number nonlinearities

Photonic crystals

Microposts

Microdisks

Faraon *et al.*, *Nature Physics* **4**, 859 (2008) Reinhard *et al.*, *Nature Photonics* **6**, 93 (2012) Bose *et al.*, *PRL* 108, 227402 (2012)

De Santis et al., *Nature Nanotechnology* 12, 663 (2017) Snijders, et al., *Nature Communications* 7, 12578 (2016)

Srinivasan and Painter, Nature 450, 862 (2007)

Quantum Dots: An "Artificial Atom"

Photonic crystals reach high Q and small V

Photonic crystals generate low-photon-number nonlinearity

Photonic crystals generate low-photon-number nonlinearity

Photonic crystals generate low-photon-number nonlinearity

 $\langle n_c \rangle = 1.5$

Bose et. al., Phys. Rev. Lett. 108, 227402 (2012)

Two-level atoms cannot create single photon nonlinearities

Two-level atoms suffer from a time-bandwidth limit

Rosenblum, Phys. Rev. A 84, 033854 (2011).

Atoms generate single photon interactions

Duan & Kimble, *PRL* 92, 127902 (2004)

Quantum dots are qubits

Stable spin ground states

Gammon, D. *PRL* **86**, 5176 (2001) Bracker, *PRL*, **94** 047402 (2005) Press et al., *Nature* 456, 218 (2008) Berezonvsky et al., *Science* 320, 349 (2008)

Atoms modulate photon phase

Low Cooperativity ($C \ll 1$)

r = -1

High Cooperativity ($C \gg 1$)

$$r = +1$$

E. Waks and J. Vuckovic, PRL. 96, 153601 (2006)

Spin controls photons

E. Waks and J. Vuckovic, *PRL*. **96**, 153601 (2006)

Photons control spin

 $|\uparrow\rangle + |\downarrow\rangle$ $|\uparrow\rangle - |\downarrow\rangle$

Photons control spin

A photon controls a photon

Spin controls photon polarization

Sun et al., *Nature Nanotechnology* **11** 539 (2016)

Ramsey interferometry realizes complete coherent control

Cavity reflectivity exhibits electron spin resonance

Sun et al., Nature Nanotechnology 11 539 (2016)

A single photon flips a spin

Sun et al., Nature Nanotechnology 11 539 (2016)

A single photon controls a single photon

Sun et al., *Science* 361, 57 (2018)

A single photon controls many photons

Single photon transistor

Sun et al., *Science* 361, 57 (2018)

Applications of quantum photonic circuits

Atoms mediate strong photon-photon interactions

Example: A deterministic photon entangler

Entangled state: $|RR\rangle + |LL\rangle$

Scalable to many photons: $|RR \cdots R\rangle + |LL \cdots L\rangle$

Photonic cluster states:

Lindner and Rudolph, *Phys. Rev. Lett.* **103**, 113602 (2009) Schwartz et. al, *Science* **354**, 434 (2016) Pichler et al., PNAS **114**, 11362 (2017)

Memory-based quantum networks are slow

Munro et al., Nature Photonics 6, 777 (2012)

Quantum error correction eliminates latency

A single spin qubit can implement error correction

Glaudell, Waks, and Taylor, New J. Phys. 18 093008 (2016)

Single-photon nonlinearity opens an unexplored regime of photonics

Quantum Machine learning

Steinbrecher et al, npj Quantum Information 5, 60 (2019)

Quantum Simulations

Cho et al.,PRL 101, 246809 (2008) Hafezi et al., NJP 15 (2013) 063001

Topological photonics

Barik et al., Science 359, 666 (2018)

Acknowledgements

Collaborators

Glenn Solomon Christopher Richardson Richard Leavitte Dan Gammon Allan Bracker

Mark Morris Gerald Baumgartner

Thank You!