Recent Advances in Quartz-Enhanced Photoacoustic Spectroscopy for Gas **Sensing Applications**

Presented by:

Environmental OS

Sensing Technical Group

Technical Group Leadership:

Krishnan Parameswaran, Analog Devices Inc., USA

Joachim Sacher, Sacher Lasertechnik GmbH, Germany

Amartya Sengupta, Indian Institute of Technology Delhi, India

Technical Group Website:

www.osa.org/EnvironmentalSensingTG

Over 1,100 Total Members

Scope:

This technical group covers optical tools and techniques used in environmental sensing, including DIAL and LIDAR, hyperspectral monitoring, detection, processing and characterization, surveying applications, atmospheric propagation, pollution monitoring, and remote imaging. Also included in this area is remote sensing for military and commercial applications such as land management, target detection, and disaster monitoring.

www.linkedin.com/groups/12055528

in			Back to LinkedIn.com
ш му б	Groups Discover		Q Search
Environmental Sercin Technical Group	Environmental Sensing Technical Group		(B) V Member
ع Sta	art a conversation with your group		Linked-In site
Enter a con	versation title	\triangleright	Announce new activities
Conversations	Jobs		Promote interactions
Webina	ishnan Parameswaran • Moderator •••• 3d otonics Engineering Manager at Analog Devices		Complement our OSA Technical Group
Hello All. I ar topic is Rem	m happy to announce the first OSA Environmental Sensors Webinar of 2018. The exciting ote Sensing of Volcanoes using Smart Sensing Technology.		Member Listserv
Here are the Presenter: D Date: Wedne Time: 1000 E	details r. Andrew McGonigle, University of Sheffield esday January 17, 2018 Eastern Time (United States), 1500 GMT		Activities: Webinars, Special Sessions in CLEO/FiO
Registration	Link: https://cc.callinfo.com/registration/#/?		

OSA INCUBATORS

Collaborate. Innovate. Discover.

OSA Agri-Photonics Incubator Advanced Spectroscopy in Precision Agriculture

12-14 May 2019, OSA Headquarters, Washington DC

We are excited to share with you that our technical group has been working on planning an OSA Incubator focused on exploring advanced spectroscopy in precision agriculture. Visit <u>www.osa.org/agriphotonicsinc</u> to learn more!

Welcome to Today's Webinar!

RECENT ADVANCES IN QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY FOR GAS SENSING APPLICATIONS

18 February 2019 • 10:00 EST

Environmental Sensing Technical Group

Vincenzo Spagnolo obtained the PhD in physics in 1994 from University of Bari. From 1997 to 1999, he worked as researcher of the National Institute of the Physics of Matter (INFM). Since 2004, he has been with the Technical University of Bari, formerly as assistant and associate professor and, starting from 2018, as Full Professor of Applied Physics. He is "Hundred Talent" visiting professor as Shanxi University in Taiyuan (China). He is the director of the joint-research lab PolySense created by Technical University of Bari and THORLABS GmbH. His research interests include optoacoustic gas sensing and spectroscopic techniques for realtime device monitoring. His research activity is documented by more than 180 Scopus publications and two filed patents. He has given more than 50 invited/keynote presentations at international conferences and workshops. Prof. Spagnolo is program committee member of several SPIE and OSA conferences. He is editor of Sensors (MPDI), Applied Science (MPDI) and Journal of Sensors (Hindawi). Prof. Spagnolo is senior member of the OSA and senior member of SPIE.

Recent advances in quartz-enhanced photoacoustic spectroscopy for gas sensing applications

Vincenzo Spagnolo

PolySense Lab, Technical University of Bari – Italy

- Motivation for optical Gas Sensing
- •Quartz Enhanced Photoacoustic gas detection

Recent advances in quartz-enhanced photoacoustic spectroscopy for gas sensing applications

Vincenzo Spagnolo

PolySense Lab, Technical University of Bari – Italy

- Motivation for optical Gas Sensing
- •Quartz Enhanced Photoacoustic gas detection
 - QEPAS: Basic principles and merits
 - QEPAS with custom quartz tuning forks

SěnSe

- QEPAS in the THZ range
- Intracavity QEPAS
- Real word applications
- Future perspectives

Main applications of gas sensing

Industrial process control

- Chemical analysis
- Monitoring combustion processes
- Quantification of gas leaks

Health and Life Sciences

- Breath analysis
- Biomedicine

TRACE GAS SENSING

Environmental Monitoring

- Air pollution monitoring
- Detection of toxic gases
- Eco-sustainability

Law Enforcement

- National Security
- Defense

Trace gases in the atmosphere

Chemical spec	cies			Sources		k			
Name	Formula	Concentration	Residence time	Biogenic	Anthropogenic	Photochemical	Volcanic	Radiogenic	<u></u>
Nitrogen	N_2	78.084%	1.6×10 ⁷ years	\checkmark			\checkmark		
Dxygen	O ₂	20.946%	$3 \times 10^{3} - 10^{4}$ years	\checkmark					
Argon	Ar	0.934%						\checkmark	
Vater vapour*	H ₂ O	0–4% (0– 40 000 ppm)	10 days	\checkmark	\checkmark		\checkmark		(1
Carbon dioxide	CO ₂	3.94×10 ⁻² % (394 ppm)	20–150 years	\checkmark	\checkmark		~		
Neon	Ne	1.818×10 ⁻³ % (18.18 ppm)					√?		
Helium	He	5.24×10 ⁻⁴ % (5.24 ppm)	10 ⁷ years					\checkmark	
Aethane	CH ₄	1.79×10 ⁻⁴ % (1.79 ppm)	10 years	\checkmark	\checkmark				
Krypton	Kr	1.14×10 ⁻⁴ % (1.14 ppm)						\checkmark	
Hydrogen	H ₂	5.3×10 ⁻⁵ % (0.53 ppm)	2 years	\checkmark	\checkmark				(2)
Nitrous oxide	N ₂ O	3.25×10 ⁻⁵ % (0.325 ppm)	150 years	\checkmark	\checkmark				
Carbon-monoxide	CO	5–25×10 ⁻⁶ % (0.05–0.25 ppm)	0.2–0.5 year	\checkmark	\checkmark				
Kenon	Xe	8.7×10 ⁻⁶ % (0.087 ppm)							
Dzone	O ₃	$1-5 \times 10^{-6}\%$ (0.01–0.05 ppm)	weeks - months			\checkmark			
Nitrogen-dioxide	NO ₂	$0.1-5 \times 10^{-7}$ % (0.001-0.05 ppm)	8–10 days	\checkmark	\checkmark	\checkmark			
Ammonia	NH ₃	$0.01 - 1 \times 10^{-7}$ % (0.0001-0.01 ppm)	~5 days	\checkmark	\checkmark				
Sulphur-dioxide	SO ₂	$0.003-3\times10^{-7}\%$ (0.03-30×10 ⁻³ ppm)	~2 days		\checkmark	\checkmark	\checkmark		
Hydrogen-sulphide	H_2S	$0.01-6\times10^{-8}\%$ (0.01-0.6×10 ⁻³ ppm)	~0.5 day	\checkmark	\checkmark		\checkmark		

Trace gases in human breath

oc voc Molecule	Formula	Biological/Pathology Indication	Center wavelength [µm]
Pentane	C ₅ H ₁₂	Inflammatory diseases, transplant rejection	6.8
Ethane	C ₂ H ₆	Lipid peroxidation and oxidation stress, lung cancer (low ppbv range)	6.8
Carbon Dioxide isotope ratio	¹³ CO ₂ / ¹² CO ₂	Helicobacter pylori infection (peptic ulcers, gastric cancer)	4.4
Carbonyl Sulfide	cos	Liver disease, acute rejection in lung transplant recipients (10-500 ppbv)	4.8
Carbon Disulfide	CS ₂	Disulfiram treatment for alcoholism	6.5
Ammonia	NH ₃	Liver and renal diseases, exercise physiology	10.3
Formaldehyde	CH ₂ O	Cancerous tumors (400-1500 ppbv)	5.7
Nitric Oxide	NO	Nitric oxide synthase activity, inflammatory and immune responses (e.g. asthma) and vascular smooth muscle response (6-100 ppb)	5.3
Hydrogen Peroxide	H ₂ O ₂	Airway inflammation, oxidative stress (1-5 ppbv)	7.9
Carbon Monoxide	со	Smoking response, lipid peroxidation, CO poisoning, vascular smooth muscle response	4.7
Ethylene	C ₂ H ₄	Oxidative stress, cancer	10.6
Acetone	C ₃ H ₆ O	Ketosis, diabetes mellitus	7.3

OUTLINE

Motivation for Gas Sensing
Quartz Enhanced Photoacoustic (QEPAS) trace gas detection

• Basic principles and merits

The physics of opto-acoustic/thermal trace gas detection

The detection of trace gases is based on the interaction between

- optical radiation: a laser source
- gas molecules: absorb light only at certain wavelengths

The PA effect - Principle

the intensity of the sound is proportional to the concentration of absorbing molecules

The PA effect - Principle

→ the intensity of the sound is proportional to the concentration of absorbing molecules

Why use the photoacoustic technique?

- [®] Excellent sensitivity up to ppq with high power lasers
- [®] Large dynamic range: linearity over a range of 10⁶
- Weigh resolution
- Past measurements
- [®] Capability of *in situ* detection
- [®] Feasible costs, compact set-up, *coupled with semiconductor lasers*

Quartz-Enhanced Photoacoustic Spectroscopy Introduction and Basic Operation

- Optical radiation is focused between the prongs of a quartz tuning fork
- Trace gases absorb optical energy at characteristic frequencies
- A pressure (sound) wave is generated by modulating the laser power
- Resonant mechanical vibration is excited by the sound waves
- The mechanical vibration is converted to an electrical signal via the piezoelectric effect
- The trace gas concentration is proportional to the electrical signal

SĕnSe

P. Patimisco A. Sampaolo, L. Dong, F.K. Tittel, V. Spagnolo, Appl. Phy P. Patimisco A. Sampaolo, H. Zheng, L. Dong, F.K. Tittel, V. Spagnolo P. Patimisco, G. Scamarcio, F.K. Tittel and V. Spagnolo,, Sensors 14, 6

Quartz-Enhanced Photoacoustic Spectroscopy Merits and main characteristics

- Small sensing module and sample volume (a few cm³)
- Wavelength independent
- Optical detector is not required
- Wide dynamic range (from % to ppt)
- Immune to environmental acoustic noise
- Acoustic micro-resonator(s) to enhance the QEPAS signal

SĕnSe

P. Patimisco, et al., Applied Physics Review, B, Datimisco 2018., Sensors 14, 6165, 2014 V. Spagnolo et al., Optics Letters, 37, 4461–4463, 2012

Quartz-Enhanced Photoacoustic Spectroscopy Merits and main characteristics

- Small sensing module and sample volume (a few cm³)
- Wavelength independent
- Optical detector is not required
- Wide dynamic range (from % to ppt)
- Immune to environmental acoustic noise
- Acoustic micro-resonator(s) to enhance the QEPAS signal
- Sensitivity scales with laser power
- Cross sensitivity issues
- Alignment (no light must hit the QTF or microresonators)
- Responsivity depends on the molecular energy transfer processes

Record sensitivity: **50 part-per-trillion** $\lambda = 10.54 \ \mu m \ (mid - IR), SF_6$

P. Patimisco, et al., Applied Physics Review,
B. Datimisco 2018., Sensors 14, 6165, 2014
V. Spagnolo et al., Optics Letters, 37, 4461–4463, 2012

SenSe

QEPAS gas sensing performance

SĕnSe

P. Patimisco, et al., Applied Physics Review, B, Patimosc, 2018., "Sensors, 14, 6165–6206, 2014.

Gas sensing techniques performances (Mid-IR)

P. Patimisco, G. Scamarcio, F.K. Tittel and V. Spagnolo, "Quartz-enhanced photoacoustic spectroscopy: a review", Sensors, 14, 6165-6206 (2014)

Effective Optical Pathlength (m)

NNEA for categories of gas detection techniques as a function of optical path-length. Key: BB-CEAS broadband cavity-enhanced spectroscopy, CRDS—cavity ring-down spectroscopy, OA-ICOS—off-axis integrated cavity output spectroscopy, OF-CEAS—optical feedback cavity-enhanced absorption spectroscopy, NICE-OHMS—noise-immune cavity-enhanced optical heterodyne spectroscopy, PAS photoacoustic spectroscopy, QEPAS—Quartz-enhanced photoacoustic spectroscopy.

OUTLINE

- Motivation for Gas Sensing
 Quartz Enhanced Photoacoustic Gas Detection
- QEPAS: Basic principles and merits
 QEPAS with custom quartz tuning forks (2nd Generation)

•

P. Patimisco, et al., Analyst 139, 2079, 2014.
A. Sampaolo, et al., Appl. Phys. Lett., 107, 231102, 2015.
P. Patimisco et al., Sens. Act, B Chem. 227, 539, 2016.

/SenSe

P. Patimisco, et al., Analyst 139, 2079, 2014.
A. Sampaolo, et al., Appl. Phys. Lett., 107, 231102, 2015.
P. Patimisco et al., Sens. Act, B Chem. 227, 539, 2016.

Custom QTF 2nd generation

P. Patimisco, et al., Applied Physics Review, 5, P.1Pattoni **2018**t al., Sensors and Actuators B Chemical,

P. Patimisco, et al., Applied Physics Review, 5, 9.1Pattoniz018t al., Sensors and Actuators B Chemical,

2nd generation main results

Single-tube microresonator

1st Overtone modes

92

SĕnSe

P. Patimisco, et al., Applied Physics Review, 5, 011106, 20 H. Zengh, L. Dong, P. Patimisco et al, Applied Physics HetZersgh10, Dôhg10, 2017paolo et al, Applied Physics Lette F. K. Tittel, A. Sampaolo, P. Patimisco et al., Optics

F. K. Tittel , A. Sampaolo, P. Patimisco et al., Optics

Dual-gas QEPAS operating at both the QTF fundamental and 1st overtone

Two beams from two independently modulated lasers are focused between the prongs of a quartz tuning fork at two different positions to excite both the fundamental and first overtone flexural modes simultaneously

SĕnSe

Dual-gas quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor system based on a frequency division multiplexing technique

H. Wu, X, Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco et al, Appl. Phys. Lett., *110, 121104,*

Dual-gas QEPAS operating at both the QTF fundamental and 1st overtone

No cross-talk between fundamental and 1st overtone

- Simultaneously dual-gas detection (eg. C₂H₂ and H₂O)
- Future improvements using single-tube resonators
- Applications include: industrial process control, isotope ratio measurements, breath analysi

SenSe

H. Wu, X, Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco et al, Appl. Phys. Lett., *110, 121104, 2017*

OUTLINE

- Motivation for Gas Sensing
 Quartz Enhanced Photoacoustic Gas Detection
- QEPAS: Basic principles and merits
 QEPAS with custom quartz tuning forks
 QEPAS in the THZ range

QEPAS sensors in the THz range

Standard QTFs are characterized by a compact sensitive volume $(\sim 0.3 \times 0.3 \times 3 \text{ mm}^3)$

In QEPAS experiments, it is critical to avoid laser illumination of the QTF, since generates an undesirable non-zero background which carries a shifting fringe-like interference pattern.

The limited space (300 μ m) between the QTF prongs is comparable with the wavelength of THz sources so far has represented the main limitation for the use in QEPAS-based sensor systems in the THz range.

Larger sized QTFs are mandatory to operate in the THz

S. Borri et al., Applied Physics Letters, 103, 021105, 2013
P. Patimisco et al., Analyst, 139, 2079-2087, 2014
P. Patimisco et al., "QEPAS Review", Sensors, 14, 6165–6206, 2014.

Why THz QEPAS Spectroscopy?

S. Borri et al., Applied Physics Letters 103, 021105, 2013
P. Patimisco et al., Analyst 139, 2079-2087, 2014
V. Spagnolo et al., Optics Express 23, 7574–7582, 2015.

THz QEPAS results employing a Novel Custom QTF

A. Sampaolo et al., Sensors, 16, 439, 2016.

THz QEPAS results employing a Novel Custom QTF

100 ppm of methanol in N₂ at P=10 Torr

Comparison between QTFs with custom and new geometry

- Same noise level
- Signal to noise ratio (SNR) and Sensitivity 9x better for QEPAS system employing a QTF with new geometry
- **(()** 30 sec integration time: Sensitivity = 160ppb and
- $NNEA = 3.75 \times 10^{-11} \text{ cm}^{-1} \text{W}/\text{VHz}$

QEPAS RECORD

QEPAS Performance for Trace Gas Species: NNEA vs λ

Fast energy relaxation rates of THz rotational transition allows to *operate at low pressure*, so taking advantages of the *very high QTF Q-factors* and enhanced selectivity.

Intracavity QEPAS Basics

Three main criteria drive the development of high-sensitivity optical sensors:

- i) Selection of optimal molecular transition in terms of absorption strength
- ii) Long optical absorption length and/or use of buildup optical cavity;
- iii) Efficient spectroscopic detection schemes, e.g. photoacoustic spectroscopy (PAS)

QEPAS sensitivity scale with optical power

S. Borri et al., Applied Physics Letters, 104, 09114, **2014** P. Patimisco et al., Analyst, 140, 736-743, **2015**
Intracavity-QEPAS setup

- RT CW DFB Quantum Cascade Laser $\lambda = 4.33 \mu m$ (P = 3mW)
- Home-made low-noise current driver \rightarrow laser linewidth $\sim 1 MHz$
- Bow-tie cavity \rightarrow 4 high reflectivity mirrors, R = 99.9%
- Electronic control-loop + PZT motor lock cavity resonant frequency to the laser one

Intracavity optical power enhancement factor = 240

Performance and long term stability

Noise Equivalent Concentration:

NEC = **300 ppt** @ 20sec integration time (4sec lock-in time constant)

Absorption Coefficient Normalized to detection bandwidth and optical power: NNEA = 3.2x10⁻¹⁰ cm⁻¹W(Hz)^{-1/2}

"Single-pass" QEPAS setup

Optical power build-up cavity removed

- Same optical power 3 mW
- Same gas pressure in the chamber 50 mbar
- Wavelength modulation approach and f_0 detection

"Single-pass" QEPAS setup

Optical power build-up cavity removed

- Same optical power 3 mW
- Same gas pressure in the chamber 50 mbar
- Wavelength modulation approach and f₀ detection

Standard single-pass QEPAS performances

NEC = **70 ppb** @ 20sec integration time NNEA = **7,5x10⁻⁸ cm⁻¹W(Hz)^{-1/2}**

Standard single-pass QEPAS performances

Comparable with intracavity enhancement : 240

OUTLINE

- Motivation for Gas Sensing
 Quartz Enhanced Photoacoustic Gas Detection
- QEPAS: Basic principles and merits
 QEPAS with custom quartz tuning forks (3rd Generation)

3rd generation of custom QTFs

Objective: Design of QTFs with a **high Q-factor** and resonant frequency in the range 15-17 kHz

P. Patimisco et al, Optics Express 27, 1401-1415, 2019.

3rd generation of custom QTFs

Objective: Design of QTFs with a **high Q-factor** and resonant frequency in the range 15-17 kHz

SĕnSe

P. Patimisco et al, Optics Express 27, 1401-1415, 2019.

3rd generation of custom QTFs

Goal: Realize custom quartz tuning forks, targeting: i) reduction of the resonance frequency; 2) maintenance of a high the Q-factor; 3) optimized electrode layout for overtone flexural mode

All these QTFs have the same prong length and thickness

P. Patimisco et al, Optics Letters *43, 1854-1857,* **2018** P. Patimisco et al, IEEE T. Ultr. Ferr. 65, 1951-1957,

3rd gen. QTFs Electrical Characterization

Results are compared with a *standard 32 kHz-Q*TF and the best QTF of the 2nd generation (*C-C2, overtone*)

 The frequency was decreased by a factor of 2 with respect to the 32 KHz-QTF achieving higher quality Q-factors.

SĕnSe

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957,
2018
P. Patimisco et al, Optics Express 27, 1401-1415,

3rd gen. QTFs Electrical Characterization

Results are compared with a *standard 32 kHz-Q*TF and the best QTF of the 2nd generation (*C-C2, overtone*)

- The frequency was decreased by a factor of 2 with respect to the 32 KHz-QTF achieving higher quality Q-factors.
- Engraving grooves on the prongs surface decreased the QTF electrical resistance by a factor of 2 (see S08-G vs S08).

SĕnSe

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957,
2018
P. Patimisco et al, Optics Express 27, 1401-1415,

3rd gen. QTFs Electrical Characterization

Results are compared with a *standard 32 kHz-Q*TF and the best QTF of the 2nd generation (*C-C2, overtone*)

- The frequency was decreased by a factor of 2 with respect to the 32 KHz-QTF achieving higher quality Q-factors.
- Engraving grooves on the prongs surface decreased the QTF electrical resistance by a factor of 2 (see S08-G vs S08).
- The QTF operating in the overtone mode (QTF-overt) exhibits a lower electrical resistance than a 32KHz-QTF.

SĕnSe

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957,
2018
P. Patimisco et al, Optics Express 27, 1401-1415,

3rd gen. QTFs – Photoacoustic performances

Detection of a water line @7.7 µm, atm pressure

All new QTFs show higher QEPAS signals than the 2nd generation.

The noise level is nearly the same for all QTFs except for QTF-overtone, due to its narrower prongs spacing (700 µm).

SĕnSe

P. Patimisco et al, Optics Express *27, 1401-1415,* **2019.**

3rd gen. QTFs – Comparison with 32 kHz-QTF

Detection of a water line @7.7 µm, atm pressure

QEPAS spectral scan measurements

3rd gen. QTFs – Comparison with 32 kHz-QTF

Detection of a water line @7.7 µm, atm pressure

P. Patimisco et al, Optics Express 27, 1401-1415, 2019.

3rd gen. QTFs –SNR performances

SĕnSe

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957, P. Patimisco et al, Optics Express *27, 1401-1415,* 2019

QTF-S08-TOP with dual-tube resonator ID = 1.59 mm and L = 12.4 mm

SNR Enhancement x60 (new QEPAS record)

P. Patimisco et al, Optics Express *27, 1401-1415,* **2019.**

New QEPAS Acoustic Detection Module with 3rd gen. QTF–available in the market in 2019

OUTLINE

Motivation for Gas Sensing

- •Quartz Enhanced Photoacoustic Gas Detection
- QEPAS: Basic principles and merits
- QEPAS with custom quartz tuning forks
- QEPAS in the THZ range
- Real world applications

Carbon Oxide detection with 3rd gen QTF

SěnSe

DFB-QCL emitting @ 4.61 μm Optical power: 21 mW Absorption line-strength: 4.5·10⁻¹⁹ cm/mol

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, F.K. Tittel, ACS Analytical Chemistry, *submitted 2019*

CO QEPAS Sensor calibration and detection limit

SěnSe

S. Li, L. Dong, H. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, F.K. Tittel, ACS <u>Analytical Chemistry</u>, *submitted 2019*

SěnSe

G. Marilena et al, Optics Express 27, 4271-4280, **2019**

C_2H_4 QEPAS Sensor calibration and detection limit

G. Marilena et al., Optics Express 27, 4271-4280, 2019

First commercial Ethylene QEPAS prototype Thorlabs Booth at Photonics West Feb. 2018

QEPAS Sensor setup for C1-C2-C3 detection

Spectroscopic technique

2f wavelength modulation: laser current modulated at the half of the QTF resonance frequency and QEPAS signal demodulated by lock-in amplifier at the QTF resonance frequency → background free detection

SénSe

. Sampaolo et al, Sensors and Actuators B. hem 282 952-960 2019

Hydrocarbons QEPAS Sensor C1-C2 detection

SénSe

Detection limit C1: **90 ppb** @ integration time **1 s** Detection limit C2: **7 ppb** @ integration time **1 s**, **RECORD for QEPAS technique**

. Sampaolo et al, Sensors and Actuators B.

Hydrocarbons QEPAS Sensor C2-C3 detection

Aramco Services Company

Propane absorption

a)2f-signal for 1000 ppm-C3 and 1000 ppm-C2 respectively in pure N₂

. Sampaolo et al, Sensors and Actuators B. hem 282 952-960 2019

Hydrocarbons QEPAS Sensor C2-C3 detection

Cross-section (cm²/mol)

1,0x10⁻¹⁸

0,0

 $Y(\lambda) = \sum_{\lambda}$

Actual C2

[ppm]

500

800

200

Mix

2850

Aramco Services Company

a)2f-signal for 1000 ppm-C3 and 1000 ppm-C2 respectively in pure N₂ b)2f-signal for a dry mixture containing 500 ppm of C2 and 500 ppm of C3, in pure N₂; c) 2f-signal for a dry mixture containing 800 ppm of C2 and 200 ppm of C3 in pure N₂; d) 2f-signal for a dry mixture containing 200 ppm of C2 and 800 ppm of C3 in pure N₂.

. Sampaolo et al, Sensors and Actuators B. hem 282 952-960 2019

New QEPAS sensor system for hydrocarbon (C1, C2, C3) detection to be tested

in Dahran Spring 2019

SénSe

30cm x 10cm x 20cm

. Sampaolo et al, Sensors and Actuators B. hem 282 952-960 2019

Future Perspectives

- ➢ Realization of QTFs 3rd generation
- Develop ultra compact I-QEPAS sensors for high-sensitive detection
- Develop QEPAS sensors for mainstream,
 upstream and downhole petrochemical
 applications
- Develop QEPAS-on drone sensing systems

Push QEPAS sensor systems development for real-world applications

and commercialization

Vincenzo Spagnolo Pietro Patimisco Angelo Sampaolo Marilena Giglio Giansergio Menduni Arianna Elefante Stefano Dello Russo Fabrizio Sgobba Andrea Zifarelli

Alex Cable Bruno Gross Verena Mackowiak Hubert Rossmadl Christian Brehm Eric Geoffrion

INO-CNR Istituto Nazionale di Ottica

Simone Borri Paolo De Natale

Rice University

Frank K. Tittel

Shanxi University

Lei Dong Hongpeng Wu

Aramco Services Company

Max Deffenbaugh Sebastian Csutak

I-QEPAS vs Other Techniques

P. Patimisco et al., "QEPAS Review", Sensors, 14, 6165–6206, 2014.

Design considerations for: QTF-S15

Same geometry as QTF S08

Increased prong spacing up to 1.5 mm to:

- Facilitate the optical alignment of the focused laser beam
- Employ laser source with **poor spatial beam** quality or emitting in the **THz range**
- Implement micro-resonator tubes with large inner diameters
- Investigate of the influence of the prongs spacing on the QEPAS signal

QTF S15 (prongs spacing 1.5 mm)

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957,
2018
P. Patimisco et al, Optics Express, *submitted*,

Design considerations for: QTF-S08-TOP **QTF S08** TOP

Same geometry as QTF S08 but with a wider top end of on both prongs to **better distribute the stress** field along the prongs and increase the generated piezo-charges

QTF S15

QTF S08

QTF-S15

Same geometry as QTF S08

Increased prong spacing up to 1.5 mm to:

- Facilitate the optical alignment of the focused laser beam
- Employ laser source with **poor spatial beam** guality or emitting in the **THz range**
- Implement micro-resonator tubes with large inner diameters
- Investigate of the influence of the prongs spacing on the QEPAS signal

P. Patimisco et al, IEEE T. Ultr. Ferr., 65, 1951-1957, 2018 P. Patimisco et al, Optics Express, *submitted*,

SĕnSe

Design considerations for QTF S-08-G

Same geometry of QTF S-08, but **with grooves** engraved on both surfaces of **the prongs** to reduce the electrical resistance

Top view of one prong

Positive Electrode
 Negative Electrode
 → Electrical Field

QTF capacitance increases

QTF S-08-G

P. Patimisco et al, IEEE T. Ultr. Ferr., doi:10.1109/TUFFC.2018.2853404 P. Patimisco et al, Optics Express, *submitted*,

Design considerations of QTF-overtone

P. Patimisco et al, Optics Letters, 43, 1854-1857, 2018