Seeing color through different eyes —
Individual differences in
human color perception
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The textbook model

of color vision
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Normal variations in color vision

1. Variations in spectral sensitivity
a. Sources of variation
b. Implications
c. Measuring sensitivity differences

2. Variations in color appearance
a. Adaptation and compensation
b. Color inferences
c. Color categories



The Standard Observer

Log,, quantal sensitivity
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Sources of variation in spectral sensitivity

Lens pigment

Macular pigment
Photopigment peak (A, .,)
Photopigment optical density
Relative numbers of cones

Al



Variations in lens pigment density with aging
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Compensation for variations over space

e.g. macular pigment screens the foveal receptors,
so that they receive less shortwave light
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This is a primary factor prompting different standard observers for 2° and 10° fields



Color changes predicted by macular density changes

As seen by the fovea As filtered by the periphery
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Variation in cone ratios

L:M cone ratios can vary over a ~20-fold range

Roorda and Williams Nature 1999; Hofer et al. J Neurosci 2005



Why do these variations matter?

1. The standard observer is an average that does not
describe any individual

2. Specifying the individual observer is important for:

Applications: to render colors and information
e.g. understanding the effects of displays and illuminants

Research: to study the visual system
e.g. isolating and characterizing mechanisms
e.g. using individual differences to reveal mechanisms




Applications: e.g. colorimetry and observer metamerism

Lights that look different to one observer will be indistinguishable to another
Thus colorimetry should incorporate both the mean and the variance
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Research: e.g. cardinal directions

The stimuli that isolate cones or post-receptoral pathways differ for each individual
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Krauskopf, Williams, and Heeley Vision Res, 1982



2 approaches for measuring and correcting for individual differences

1. Direct — measure the individual’s sensitivity or matches
e.g. directly measure an observer’s color matches

2. Indirect — measures sources of variation to predict sensitivity

e.g. correct sensitivity based on measurement of macular pigment density
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Log,, quantal sensitivity

Individual differences in luminance sensitivity

Luminance = sum of L+M cone responses
and thus varies with L and M sensitivities and ratios
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Common methods for measuring luminance:

1. Flicker photometry
- based on poor temporal resolution for color

2. Minimally distinct border
- based on poor spatial resolution for color

3. Minimum motion
- based on nulling luminance signal for motion



Minimum Motion Technique

Red-blue
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Cavanagh, Anstis, and MacLeod JOSA A 1987



Frame 1

Frame 2

A possible shortcut for approximating an individual’s sensitivity:

Predicting color matches from luminance matches

Luminance matches and color matches are affected by common factors

Thus if we could estimate these factors from an individual’s luminance
settings we could approximate the observer’s spectral sensitivity

Using this
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Variations in lens and macular density and cone ratios tilt the equiluminant plane
in different ways

Thus values for these factors can be estimated from the luminance matches
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If you know the lens and macular values yo can then approximate the color matches
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Knowing only the lens and macular densities is enough to correct for much (but not

all) of the error from assuming a standard observer
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Research: e.g. cardinal directions

Isolating the individual’s chromatic axes
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Techniques for identifying the cardinal axes:

1. Chromatic adaptation: to desensitize cones
2. Transient tritanopia: to desensitize post-receptoral channel
3. Minimally distinct border: based on poor spatial resolution of S cones
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Predicting chromatic axes from luminance matches

There are strong correlations between tilt of the luminance plane and
rotation of the chromatic axes
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For more details attend the virtual Vision Sciences Society Conference June 20-24!



Research: Using individual differences to reveal mechanisms
of color vision

e.g. differences in color matching are correlated for some wavelengths but not others

The pattern of correlations can reveal the factors responsible for the variations

using this to predict this
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Research: Using individual differences to reveal mechanisms
of color vision

e.g. differences in color matching are correlated for some wavelengths but not others

The pattern of correlations can reveal the factors responsible for the variations
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FACTOR LOADING
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independent variations in macular and lens pigment density
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Interim Summary

1. There are large normal variations in spectral sensitivity

2. These are important to account for in both applications
and basic research

3. They can also be harnessed to reveal visual processes

using individual differences to infer visual and cognitive functions:
Wilmer Spatial Vision 2008; Peterzell Elec Imaging 2016; Mollon et al. Vision Res 2017,
Hedge et al. Beh Res Meths 2018



Normal variations in color vision

2. Variations in color appearance
a. Adaptation and compensation
b. Color inferences
c. Color categories



What shapes individual differences in color appearance?

Our brain? Our world? Our experience?

Dorsal
stream

Ventral
stream
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Differences in sensitivity show little relationship to
differences in color appearance

Examples:

1. Color percepts are relatively unaffected by the cone ratios
(Miyahara et al. Vision Res 1998; Brainard et al. JOSA A 2000)

2. Color perception remains stable despite sensitivity changes with aging
(Werner and Schefrin JOSA A 1990, 1993; Wuerger PLoS One 2013)

3. Color perception remain stable despite sensitivity changes with eccentricity
(Webster and Leonard JOSA A 2008; Webster et al. Proc Roy Soc B 2010;
Bompas et al. JOV 2013)

Emery and Webster Cur Op Beh Sci 2019; Billock Comp Brain Beh 2020; Webster JOSA A 2020



Color appearance and the environment

Many aspects of color perception may be tied to properties of the environment

e.g. salient colors (e.g. blue and yellow) may look special
because they are salient properties of the world (e.g. sun and sky)

0.9

5200 ™

Mollon Visual Neuroscience, 2006



The visual system is highly adaptable,
and thus color appearance is calibrated by
the specific environment we are exposed to







Adaptation and Compensation

Because adaptation adjusts the
observer to their environment,
these adjustments tend to compensate
or discount for the observer’s sensitivity

Webster JOV 2011; Webster Ann Rev Vis Sci 2015



Discounting the mean: e.g. compensating for lens pigment

as seen by image filtered through as seen by older observer
young observer lens of older eye adapted to their lens
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Spectral sensitivity before (red) and
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Changes in the achromatic locus following surgery
reveal a very slow recovery.
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Discounting the mean: e.g. compensating for macular pigment

As seen by the fovea
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White settings in the fovea and periphery:

Nearly complete compensation for the macular pigment density, consistent with
local receptor adaptation

achromatic settings
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Adaptation in the fovea and periphery is adjusted to the
same physical stimulus, not the same retinal stimulus
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Compensating for the variance
Chromatic signals are weaker than luminance but perceived contrast is similar

luminance
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Adaptation can adjust to biases along different color directions
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And thus can adjust to the biases in natural color distributions
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Environments implied by uniform color spaces

e.g. distribution of Munsell hues in cone-opponent space

180

270

McDermott and Webster JOSA A 2012



Constant chroma requires greater cone-opponent contrasts
along the blue-yellow axis, consistent with adaptation to greater
blue-yellow variation in the world
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A uniform color metric based on visual coding of the color environment

instantaneous recent average
£l T Munsell Model

(spectral irradiance ) f :
(cone response functions ) , \ %
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Smet, Webster and Whitehead JOSA 2016



Compensation for color deficiencies
trichromat Al i "'/7/’ \\\\\\Wi""’f;?i

,\-&)
3 e _, o

Normal Trichromat

|

Absorption

T

400 650
Wavelength (nm)

anomalous pigments

Anomalous Trichromat

Absorption

|
J
|

T T e T 1
400 650
Wavelength (nm)

color percepts
compensated for
reduced LM contrast

Webster et al. 2010



LvsM and SvsLM chromatic plane

filtered for deuteranomalous pigments

SvsLM contrast

contrasts predicted by thresholds

LvsM contrast



Percent of normal

Anomalous trichromats and contrast scaling

Anomals weight L-M contrasts more than their cone sensitivity predicts
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response amplitude (%)

Neural correlates of contrast compensation
BOLD responses to LM or S chromatic contrast

LvsM: predicted vs observed
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Interim Summary

1. Adaptation compensates for the sensitivity variations in the observer

2. This tends to maintain a high degree of color constancy within the
observer

3. It should also promote “inter-observer” constancy to the extent that
different observers are adapted to the same environment



Adaptation and individual differences

But if adapting different observers to the same environment
leads to converging perceptual experiences

Then adapting similar observers to different environments
should lead to diverging percepts




Adaptation and natural color distributions

Monsoon - September Winter - January

Webster and Mollon Vision Res 1997; Webster et al. Network 2007






Predicting adaptation to different environments

To the extent that we understand the processes of color adaptation, we can
simulate how scenes should look under different states of adaptation

Webster Vision Res 2014



Adaptation modeled by gain control in the receptors (to match the mean)

And gain control in multiple cortical color channels (to match the contrasts)
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examples of natural environments




examples of other environments

uncharacteristic unnatural uncivilized




lush environment arid environment
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Adaptation to more extreme environments
e.g. seeing “red” on Mars

adapted to mean

adapted to earth

e

Webster, Glimpse 2009 adapted to contrasts



Mars One

-




Kay Radzik Warren from Reno 1 of 100 finalists
from more than 200,000 applicants!




Adaptation to more extreme environments
e.g. seeing “red” on Mars

adapted to mean

adapted to earth

e

Webster, Glimpse 2009 adapted to contrasts



Testing color percepts in different environments
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Webster et al. JOSA A 2004
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Webster et al.
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Seasonal changes in unique yellow

Unique yellow Unique green Rayleigh matches
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Interim Summary

1. Adaptation adjusts color perception for the observer’s color environment

2. As a result individuals exposed to different environments should tend to
see and experience color differently



Individual differences and higher-level factors:
Color inferences




Accounts of the dress illusion point to whether you perceive the dress in bright light or shade

Rosa Lafer-Sousa (background by Beau Lotto)

Yukiyasu Kamitani
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Why does the blue image appear less colorful than the yellow?
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Occures even for uniform fields




~specific to blue-yellow axis




Inverting the color removes the ambiguity in the dress

Winkler et al. Cur Bio 2015; Gegenfurtner et al. Cur Bio 2015; Lafer-Sousa Cur Bio 2015



Blue-yellow and material percepts:
inverting color can change steel to bronze










Shadows are from indirect light and tend to be blue:
just as we discount their brightness we may discount
their color.




Surface color vs illumination color
with Ivana llic




yellow to the object

Blue tends to be attributed to the lighting,




Thus inverting the colors eliminates the ambiguity,
while amplifying it doesn’t
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Individual differences and higher-level factors:
Color naming and color categories

The World Color Survey
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Berlin and Kay Basic color Terms: Their Universality and Evolution 1969



Mean focal stimuli for red, green, blue, and yellow in different languages
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Webster and Kay Anthropology of Color 2007



There are also large individual differences in color naming within languages
Color categories vary widely from one individual to the next, and
speakers from different languages can be more similar than from the same language

43. Gunu,Cameroon 86. Shipibo, Peru 88. Slavé, Canada  103. Walpiri, Australia

GBP

Green/Blue

Grue/Purple

Grue

Dark

Gray

Lindsey and Brown PNAS 2009; Lindsey et al. Cur Bio 2015; Gibson et al. PNAS 2017



Individual differences in color appearance:
Differences in unigue hue settings are large and uncorrelated with each other

: yellow

Webster et al. JOSA 2000



Unique and binary hues are also uncorrelated

S-(L+M)

0 L-M

270

Malkoc et al. JOSA 2005



Using individual differences to explore the perceptual
representation of color

Hue scaling

“Describe the proportion of color that is red/green and blue/yellow”
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Emery et al. JOSA A 2017a, 2017b; Matera et al. JOSA A 2020



Responses coded as “perceptual angle”

B:50 G:50 B

Perceived angle
135°

G



Individual hue scaling functions
(perceptual angle vs stimulus angle)

Between/within observer variability = 2:1

Hue: 26 observers
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We can again explore the processes contributing to hue-scaling
differences by analyzing the pattern of correlations

Hue: 26 observers
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300 ¢

200 1

100 |

perceived angle

0 100 200 300 400
stimulus angle



Only nearby stimulus angles are correlated indicating narrowly tuned factors

Cumulative variance: 72%
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Narrow factors are not predicted by variations in
conventional opponent processing

Observed

Predicted
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But are consistent with a population code for color
categories

Predicted

Observed
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To what extent do these factors reveal the underlying representation of
color, rather than the properties of the task?

Color VS. Motion

Luminance axis U&Daxis

1 —_ R &G axis - [ —__ Depth axis

B &Y axis

Emery et al. in preparation



Perceptual angle in color or motion space

B:50 G:50 B U:50 L:50
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variability vs. stimulus angle

Stronger evidence for special (unique) directions for motion
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Variability in motion judgments correlates over very different

stimulus angles

Hue
Stimulus angle
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Motion factors vary roughly sinusoidally
— consistent with variations in underlying cardinal axes
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Summary

Color and motion percepts reflect very
different patterns of individual
differences:

Color: multiple, narrowly-tuned
processes, with no evidence for
opponent axes, and only weak evidence
for privileged directions (e.g. unique
hues)

Motion: differences consistent with a
metrical code in terms of the cardinal
axes

Hue
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Conclusions

1. Individual differences are a prominent feature of color vision and affect all aspects of
color perception

2. These differences are important to account for in both color research and color
applications

3. Differences in sensitivity often have little effect on color appearance, which may be
strongly shaped by experience and adaptation to the color environment

4. For both sensitivity and perception, the patterns of inter-observer variation can
provide important clues about the mechanisms and processes of color vision
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