Source Modeling in Illumination Optics

Presented by:

OSA NonImaging Optical Design Technical Group

The OSA NonImaging Optical Design Technical Group Welcomes You

Technical Group Leadership 2019

Maryna L. Meretska Chair

Sanathana Konugolu Venkata Sekar Vice Chair

Furkan E. Sahin Webinar Officer

Thien-An Nguyen Event Officer

Richard J. Williams Social Media Officer

Technical Group at a Glance

• Focus

- Design and characterization of illumination systems using modeling techniques.
- Non-sequential design techniques, including both software and tailoring methods provide the tools to design efficient optical components that provide the desired distribution at the target.
- Typical applications include solar energy, lighting, and displays.

Mission

- To benefit *YOU* and to strengthen *OUR* community
- Webinars, podcasts, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGactivities@osa.org</u>.

Find us here

- Website: <u>https://www.osa.org/en-</u> <u>us/get_involved/technical_groups/fdi/nonimaging_optical_design/</u>
- Facebook: <u>https://www.facebook.com/groups/OSAnonimagingopticaldesign/</u>
- LinkedIn: <u>https://www.linkedin.com/groups/4766842/</u>

Today's Webinar

What is etendue, and why is it important?

Julius Muschaweck

CEO, JMO GmbH julius@jmoptics.de

Speaker's Short Bio:

Julius Muschaweck, a German physicist, has been working on optical design for illumination for over twenty years. After a stay as Visiting Scholar at the University of Chicago with Prof. Roland Winston (well known as the originator of Nonimaging Optics), he was co-founder and CEO of OEC, an optical engineering service which pioneered freeform optics. Later, at OSRAM, where he held the position of Senior Principal Key Expert (the highest rank in the OSRAM/Siemens expert career), he coordinated the over 100 optical designers within OSRAM world-wide. He then joined ARRI, the leading movie camera and lamp head maker, as Principal Optical Scientist. Julius Muschaweck now works as an independent consultant, providing illumination optics, and writing about the subject.

Source modeling in illumination optics

Julius Muschaweck

OSA webinar – Dec. 3, 2019

The problem

- Your task (just an example): TIR lens design for a given target intensity distribution
- Let's assume you know sufficient optics
- No reliable simulation results without
- accurate geometry representation,
- accurate material information,
- accurate surface properties,
- a sufficiently accurate source model

Apr 10, 2019 TIRLens 2 LightTools 8 6 0

The problem

- Your task (just an exar TIR lens design for a g
- Let's assume you know
- No reliable simulation
- accurate geometry representation
- accurate material information,
- accurate surface properties,
- a sufficiently accurate

© 2019 JMO GmbH

A (nearly) perfectly accurate source model

How much light

- from any point
- into any direction
- at any wavelength?

In more precise terms:

Spectral radiance

 $L_{\lambda}(x, y, \theta, \varphi, \lambda)$

Why "nearly" perfectly accurate?

• Polarization: Stokes vector

$$L_{\lambda}(x, y, \theta, \varphi, \lambda) \rightarrow \vec{S}_{\lambda}(x, y, \theta, \varphi, \lambda)$$

Coherence: Correlation function

$$g^{(1)}(\mathbf{r}_{1}, t_{1}; \mathbf{r}_{2}, t_{2}) = \frac{\langle E^{*}(\mathbf{r}_{1}, t_{1}) E(\mathbf{r}_{2}, t_{2}) \rangle}{\sqrt{\langle |E(\mathbf{r}_{1}, t_{1})|^{2} \rangle \langle |E(\mathbf{r}_{2}, t_{2})|^{2} \rangle}}$$

• We do not go there. No polarization, no coherence today.

Diffraction

https://commons.wikimedia.org/wiki/File:Laguerre-gaussian.png

Cylindrical transverse modes

No diffraction today.

Retroactive effects: Source reflectivity

© 2019 JMO GmbH

Retroactive effects: Source reflectivity

Retroactive effects: Source reflectivity

© 2019 JMO GmbH

The full beauty source model – a nightmare

 $L_{\lambda}(x, y, \theta, \varphi, \lambda)$

A function "living" in five dimensions

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Some arbitrary functions

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

The full beauty source model – a nightmare

The simplest source model: point sources

Default: isotropic, monochromatic Five numbers: *x*, *y*, *z*, λ , ϕ

Add **aim cone** (e.g. ± 20°)

The simplest source model: point sources

A word on intensity

Solid angle Ω = area on unit sphere, $\Omega = \frac{A}{r^2}$

Intensity *I*: Choose direction (θ, φ) Consider tiny solid angle d Ω there Determine flux d Φ into d Ω

$$I = I(heta, arphi) = \mathsf{d}\Phi/\mathsf{d}\Omega$$

Image: https://de.wikipedia.org/wiki/Datei:Angle_solide_coordonnees.svg, by Haade / *derivative work: Habib.mhenni © 2019 JMO GmbH Julius Muschaweck – julius@jmoptics.de

A very useful function to model intensity: cosⁿ

For planar sources with circular beam: Gauss ($e^{-\frac{c}{x^2}}$) not very good.

cosⁿ:

- Full range of beam widths, collimated to isotropic
- Always "nice"
- Always zero at 90° (except when isotropic)
- \gtrsim 50% of flux within FWHM (more for wide beams)

My cosⁿ calculator spreadsheet

© 2019 IMO GmbH

	From I0/phi	From FWHM		Main (from n)		14
	5.28	11.14		2.00	n	15
0	57.42	40.00	0	90.00	FWHM	16
0	99.41	71.16	0	143.13	FW0.1M	17
cd/lm	1.000	1.933	cd/lm	0.477	10 / Phi	18

Creates LightTools[®] apodization files, correctly integrating the distribution over intervals

Freely available at

https://github.com/JuliusMuschaweck/IlluminationDesignTools

Some special cosⁿ distributions

Lambertian sources

By definition: Lambertian means

- ✓ planar
- ✓ constant luminance over angle and area

"A planar surface that looks equally bright, no matter where you look and from where you look"

Intensity distribution:

 $I(\theta) = I_0 \cos(\theta)$

© 2019 JMO GmbH

Lambertian sources: Encircled energy

Lambertian sources: An idealization! Beware deviations at high angles!

A word on irradiance / exitance

How much flux per area is coming (irradiance) or going (exitance)?

Irradiance E: Choose location (x, y)Consider tiny area element dA there Determine flux d Φ into dA

$$E = E(x, y) = d\Phi/dA$$

A word on radiometric vs. photometric quantities

	Overall	Per solid angle	Per area	Per phase space volume Per proj. solid angle, area, n²
tric	a number	function of θ, φ	function of <i>x</i> , <i>y</i>	function of <i>x</i> , <i>y</i> , θ, φ
tome	Luminous flux	Luminous intensity	Illuminance Luminous exitance	Luminance
Pho	Lumen (lm)	Candela (cd = lm/sr)	Lux ($Ix = Im/m^2$)	nit (cd/m² = lx/sr = lm/(m² sr)
U	Φ _v	l _v	E _v	L _v
t				
iome	Radiant flux	Radiant intensity	Irradiance Radiant exitance	Radiance
Rad	Watt (W)	W/sr	W/m ²	W/(m² sr)
	Φ (Φ _E , <i>P</i>)	1	E	L

The diamond

For more on this, see my previous webinar on étendue at

https://www.osa.org/en-us/meetings/webinar/2019/what is etendue and why is it important/

Varying exitance: surface apodization

In general, exitance (flux per area as function of location) varies Assign tabulated values to your emitting surface:

Spectral modeling

Spatial / angular apodization and spectrum

Spatial, angular and spectral dependence separate:

$$L_{\lambda}(x, y, \theta, \varphi, \lambda) = C_0 \times f_1(x, y) \times f_2(\theta, \varphi) \times f_3(\lambda)$$

 C_0 : Normalization factor for correct overall flux

- f_1 : Spatial apodization
- f_2 : Angular apodization
- *f*₃: Spectrum

Much less general than the full model – but **very** useful in practice

Visualizing variable separation

- From wherever you look, the source surface has the same apodization pattern
- Wherever you place a pinhole on the source, the far field looks the same
- Each point on the source sends the same spectrum into each direction
- What if that's not sufficient?

© 2019 JMO GmbH

Physical modeling

Build a detailed physical model of the source in software Assign all relevant optical and emission properties

© 2019 JMO GmbH

Physical modeling steps

Nv 26, 2019 Lyditols 87.0

start with "empty" CAD

immerse silicone cup assign refractive index make inner surfaces 90% scatter exit surface refracts, Fresnel split Immerse LED chip make top surface emitting make surfaces absorbing add wirebond pad

Nov 26, 2019 LA_G6SP_Physical.2 LightTools 8.7.0

Physical modeling

- Build a detailed physical model of the source in software
- Assign all relevant optical and emission properties
- Sounds like "the way to go", but not in practice: Lack of information
- If you choose this approach, then validate. And validate again.
- Against anything you know: Far field intensity, near field data from ray files, photographs..

Ray files

Monte Carlo sampling of $L_{\lambda}(x, y, \theta, \varphi, \lambda)$: Millions of rays, like single photon counting Just download ray file from vendor's web site, insert and run ... or so you thought ...

	OSR/ Opto Semicon	A.M. ductors			
File	ename	Size	Date		
CAE	D_LA_G6SP_20190425.zip	199 KB	25.4.2019		
rayf	file_LA_G6SP_20190425_ASAP.zip	109.3 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_ASCII.zip	125.8 MB	25.4.2019		
rayf	file_LA_G6SP_20190425_EULUMDAT.zip	228 KB	25.4.2019		
rayf	file_LA_G6SP_20190425_IES.zip	228 KB	25.4.2019		
rayf	file_LA_G6SP_20190425_IES_TM25.zip	498.3 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_LightTools.zip	109.3 MB	25.4.2019	ravfile LA G6SP 20190425 LightTools.zip	109.3 MB
rayf	file_LA_G6SP_20190425_Lucidshape.zip	109.3 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_OSRAM.zip	110.8 MB	25.4.2019		
rayf	file_LA_G6SP_20190425_Photopia.zip	109.3 MB	25.4.2019		
rayf	file_LA_G6SP_20190425_Simulux.zip	109.3 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_Speos.zip	126.5 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_TraceProBinary.zip	109.3 MB	25.4.2019		
rayfi	file_LA_G6SP_20190425_TraceProText.zip	125.8 MB	25.4.2019		
rayf	file_LA_G6SP_20190425_TTR.zip	819.2 MB	25.4.2019		
rayf	file_LA_G6SP_20190425_Zemax.zip	109.3 MB	25.4.2019		

© 2019 JMO GmbH

Nov 26, 2019 LA_G6SP_Rayfile.1 LightTools 8.7.0

Nov 26, 2019 LA, G65P, Rayfile.1 LightTools 8.7.0

make sure they are properly aligned group for easy, safe move/rotate

Nov 26, 2019 LA_GESP_Rayfile Uphtools 87.0 non-raytraceable

rays have "seen" the package already

Julius Muschaweck – julius@jmoptics.de

4

Nov 26, 2019 LA_G6SP_Rayfile.1 LightTools 8.7.0

LA G6SP

Brightness Groups

Group	Luminous Intensity ¹⁾ I _F = 140 mA min. I _V	Luminous Intensity. ⁹ I _F = 140 mA max. I _V	Luminous Flux ⁶⁾ I _F = 140 mA typ. Φ _V		
DA	4.5 cd	5.6 cd	15.1 lm		
DB	5.6 cd	7.1 cd	19.0 lm		
EA	7.1 cd	9.0 cd	24.2 lm		
EB	9.0 cd	11.2 cd	30.3 lm		
FA	11.2 cd	14.0 cd	37.8 lm		

assign correct flux

from data sheet

VALIDATE!

Spectral Reg	gion	Spectral Re	gion Chart			Display
Coordinates	Emittanc	e Aim Sph	Aim Sphere Data			Ray Trace
Total Flux/Po	wer					
() Radiom	etric Power	0.1016006	Watts			
Photom	etric Flux	25.00000	Lumen		~	
Measured 0)ver	Whole Sphere	~			

- Import ray data
- Import source CAD model, make non raytraceable, ensure proper alignment
- Assign correct spectrum
- Assign correct flux. Highly nontrivial for white or multi LEDs
- Group
- If you are lucky (e.g. OSRAM), you can use predefined library elements

LA_G6SP_20180223_spectrum.sre	26.11.2019 19:59	SRE-Datei	2 KB
LA_G6SP_20190425_info.pdf	26.11.2019 19:59	Adobe Acrobat D	189 KB
LA_G6SP_20190425_sample_Lighttools.ent	26.11.2019 19:59	ENT-Datei	527 KB
rayfile_LA_G6SP_5M_20190425_LightTools_7_Binary.RAY	26.11.2019 19:59	RAY-Datei	136,719 KB
rayfile_LA_G6SP_100k_20190425_LightTools_7_Binary.RAY	26.11.2019 19:59	RAY-Datei	2,735 KB

Validating: luminous exitance

Julius Muschaweck – julius@jmoptics.de

© 2019 JMO GmbH

5-36

Validating: luminous intensity

Julius Muschaweck – julius@jmoptics.de

5-37

© 2019 JMO GmbH

Modeling white LEDs from ray files: Blue + phosphor

- Chips emit blue light
- Blue light: Partially scattered Partially converted to yellow
- Spatial blue/yellow separation
- Depending on LED construction
- Here: "white pearls in yellow soup"
- Angular blue/yellow separation
- "Color over angle"
- If you don't know any better:
 Play with cos^{0.8} for yellow, cos^{1.4} for blue angular apodization
 Details would be a separate talk...

© 2019 JMO GmbH

Vendor support

• OSRAM: Separate blue and yellow ray files, separate spectra, complete library elements

Variaus		LCW_CQ7Pcc_160511_geometry.IGS	29.11.2018 09:02	IGS-Datei	238 KB	
		LCW_CQ7Pcc_160511_geometry.SLDPRT	29.11.2018 09:02	SLDPRT-Datei	169 KB	
CAD formats		LCW_CQ7Pcc_160511_geometry.STEP	29.11.2018 09:02	STEP-Datei	113 KB	
		LCW_CQDP_6M_blue_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
		LCW_CQDP_6M_yellow_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
	1	LCW_CQDP_7P_blue_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
Separate	>	LCW_CQDP_7P_yellow_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
blue/yellow spectra		LCW_CQDP_7S_blue_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
for various color bins		LCW_CQDP_7S_yellow_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
	_	LCW_CQDP_7V_blue_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	
		LCW_CQDP_7V_yellow_070411_spectrum.sre	29.11.2018 09:02	SRE-Datei	2 KB	Info file with
		LCW_CR7Pcc_210912_info.pdf	29.11.2018 09:02	Adobe Acrobat D	434 KB	alignment and more
Plue roy files		rayfile_LCW_CR7Pcc_blue_5M_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	361,190 KB	alignment and more
Diue ray liles		rayfile_LCW_CR7Pcc_blue_100k_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	7,224 KB	
up to 5 ivilo rays		rayfile_LCW_CR7Pcc_blue_500k_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	36,120 KB	Complete
		rayfile_LCW_CR7Pcc_sample_LIGHTTOOLS.1.ent	29.11.2018 09:02	ENT-Datei	250 KB	
Vollow rov filos		rayfile_LCW_CR7Pcc_yellow_5M_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	361,211 KB	
Tellow ray lifes		rayfile_LCW_CR7Pcc_yellow_100k_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	7,224 KB	
up to 5 Milo rays		rayfile_LCW_CR7Pcc_yellow_500k_210912_LIGHTTOOLS.RAY	29.11.2018 09:02	RAY-Datei	36,121 KB	

Conclusion

- Source modeling in illumination optics: highly nontrivial
- Skillful simplification is key
- Default: Ray files with painstakingly accurate workflow to obtain complete model
- When available, use vendor's predefined library elements / scripts with care
- Use simplified physical models, validated against ray files, for huge ray numbers
- Use even more simplified heuristic models (Lambertian, apodized) for quick work
- Always validate
- In the (distant) future: IES TM25 ray file format is capable of including ALL such features

