Extreme confinement of light by stacking and twisting quantum materials

European Research Council Established by the European Commission

Fundació Privada CELLEX

Frank Koppens The Institute of Photonic Sciences (ICFO) **Barcelona**, Spain

Barcelona Institute of Science and Technology

Polaritons: 20 nanometer

Polaritons: 20 nanometer

Extreme confinement of light

Forbidden optical transitions

RESEARCH ARTICLES

OPTICS

Shrinking light to allow forbidden transitions on the atomic scale

Nicholas Rivera,1*+ Ido Kaminer,1* Bo Zhen,2 John D. Joannopoulos,1 Marin Soljačić

Light–matter interactions with photonic quasiparticles

Nicholas Rivera¹^M and Ido Kaminer²^M

2d materials

Graphene (semimetal)

Flexible electronics

Boron Nitride (insulator)

Tunnel barrier

MoS₂ (semi-conductor)

Valleytronics

Polaritons

See reviews: Low et al., Polaritons in layered two-dimensional materials, Nature Materials (2016). Basov et al., Science (2016)

(cuprates, FeSe, RuCl)

Graphene "Dirac" plasmons

Many body excitation

Long-range Coulomb interaction

Can couple to light

Pioneering theory work: Jablan et al, PRB (2009) Hwang et al, PRB (2007) Polini et al, PRB (2008) Wunsch et al., NJP (2008) Koppens, Abajo, Nano Letters (2012)

See also Pioneering experimental work: Basov Hillenbrand Atwater Halas Mortenson Pruneri Altug etc etc.

Photon velocity: 3.10⁸ m/s

Plasmon velocity: 3.10⁶ m/s

Electron velocity: 1.10⁶ m/s

Polaritons in van der Waals materials, Science (2016)

pubs.acs.org/journal/apchd5

Quantum Nanophotonics in Two-Dimensional Materials

Antoine Reserbat-Plantey,* Itai Epstein, Iacopo Torre, Antonio T. Costa, P. A. D. Gonçalves, N. Asger Mortensen, Marco Polini, Justin C. W. Song, Nuno M. R. Peres, and Frank H. L. Koppens*

Perspective

Mechanically-assembled stacks

Dielectric

Semi-conducting

Super-conducting

Topological insulators

Semi-metal

Magnetic

Novoselov et al, Science 2016

Mechanically-assembled stacks

Van der Waals heterostructures

b

Van der Waals heterostructures

Twisted 2D materials

Twisted 2D materials

Twisted Graphene

Latychevskaia et. al., Ultramicroscopy (2019)

Twisted bilayer graphene Magic angle 1.05°

Twisted bilayer graphene Magic angle 1.05°

 K'_s

 $2w \ll \hbar v_0 k_{\theta}$

Twisted bilayer graphene Magic angle 1.05°

Twisted graphene: Small angle and magic angle Moire size = 14nm/(angle in degrees)

This talk

How to bridge this gap??

Polaritons: 20 nanometer

Scattering near-field microscopy: probe light of $\lambda\text{=}6\text{-}100\mu\text{m}$ with 20nm resolution

Mid-infrared light (wavelength 10.000nm) couples with an atomic force microscope tip

Nanofocus is created at the tip apex (~10-20nm)

(>10.000 times smaller than the wavelength!!!!)

2D material is brought close to the nanofocus

Plasmons are launched from the nanofocus

Pioneered by groups of Hillenbrand, Koppens, Basov See e.g. Chen et al, Nature 2012. Fei et al, Nature 2012

Plasmons are reflected by an edge

Scattered light from the tip apex is collected in the far-field

The device is moved and the plasmon is excited at a different position

Scattered light is recorded mapping a standing wave pattern

Scattering near-field microscopy: probe light of λ =6-100µm with 20nm resolution

Probe local Real(ε), Imag(ε) with 20nm resolution

(e.g. intersubband transitions)

Probe propagating collective excitations

> e.g. plasmons phonon polaritons

See also groups of Hillenbrand, Basov, ... See e.g. Chen et al, Nature 2012. Fei et al, Nature 2012

Plasmons in graphene

Plasmon confinement $\sim \lambda/200$ Plasmon quality factor ~ 30

Woessner et al, Nature Materials 2014, Chen Nature 2012, Fei Nature 2012 See also work from Basov Group

Propagating plasmons

Near-field microscopy

Twisted graphene

Propagating phonon polaritons

Groups of Basov, Hillenbrand, Taubner, Caldwell, etc. etc.

Superconductors

Correlated materials

Quantum non-local Electron interactions

s: Lego toolbox for light manipulation at atomic scale

Lundeberg et al., Science 2017

Lundeberg, Nature Materials 2016

Graphene - insulator - metal

More confinement but no additional loss!!!

Graphene - insulator - metal

Plasmonic nanocavities

I. Epstein et al. Science (2020)

Illuminate with IR light: $\lambda_0 = 8 - 11 \ \mu m$

Graphene edge ▲ Fill-factor: 3-10%

Extremely small-volume cavity

Purcell factors of ~10⁸

I. Epstein et al. Science (2020)

Confine infrared light (10.000 nm) into a volume of 1nm x 75nm x 75nm

SPP patch antennas (VIS) λ₀≈700nm

Nature 492, (2012) – David R. Smith group

AGP patch antennas (MIR) λ₀≈10μm

Hyperbolic PhP

Non-hyperbolic **Phonon polaritons**

Nanogap

Hyperbolic metamaterials

Metallic particles

 10^{-2}

Hyperbolic Bound-state-in-continuum Herzig-Sheinfux (in preparation).

Slab of 100nm thickness

Shrinking down

Caldwell, Novoselov, Nat Comm 2014

Basov, Caldwell, nano lett 2016

Hillenbrand, Nat. Comm. 2017

Baldassarre, APL 2018

Centrone, Caldwell nanoletters 2020

Tamagnone, Capasso, Arxiv 2019

Hillenbrand, Light S&A 2017

Caldwell, Centrone, nanophotonics 2020

Basov, Polariton panorama, Nanophotonics 2020

Phonon polaritons:

Many high-momentum modes (A0,A1,A2)

Can we make cavity for all modes at the same time?

Substrate defined properties

Propagation angle : frequency dependent

Substrate defined properties

Propagation angle : frequency dependent

Ray reflection - critical incidence

Cavity of phonon polariton

- NTransfer isotopically pure hBN
- Reflection for all the modes (A0,A1,A2, etc.)

• Start with ultraflat gold (roughness ≈ 350 pm RMS)

s-SNOM measurements

Cavity: 250nm Thickness: 25nm

1420 cm⁻¹ 1460 cm⁻¹

Experiment:

Simulation:

s-SNOM measurements

Cavity: 250nm Thickness: 25nm

Experiment:

Simulation:

1480 cm⁻¹

Q is much higher than from single mode theory

Bound State in continuum

- First hypothesized by Wigner
- no leakage due to interference
- usually ~2 interfering channels
- In the theory limit (no loss, etc...) a BIC mode exists due to **infinite** interfering channels
- ...and it can be confined in 3D, supposed to be impossible...

Review on BICs in: Zhen, Solajcic, et al., Nat rev mat 2016

Hyperbolic PhP

Non-hyperbolic **Phonon polaritons**

 10^{-4}

Nanogap

Hyperbolic metamaterials

 10^{-2}

Metallic particles

 λ^3/λ_0^3

 10^{-6} Normalized volume,

Interband plasmons in undoped twisted bilayer graphene

N. C. H. Hesp, I. Torre, et al., arXiv:1910.07893 P. Novelli, I. Torre, F.H.L. Koppens, F. Taddei, and M. Polini, Phys. Rev. B 2020

twisted bilayer graphene

twisted bilayer graphene

0.1 (eV) -0.1

Cao et al., Nature 2018

What about optical and collective excitations?

P. Novelli, I. Torre, F.H.L. Koppens, F. Taddei, and M. Polini, Phys. Rev. B

What about optical and collective excitations?

P. Novelli, I. Torre, F.H.L. Koppens, F. Taddei, and M. Polini, Phys. Rev. B

Interband Plasmons in Twisted Graphene

Hesp et al., Arxiv 1910.07893

Theory on interbank plasmons in twisted graphene: Stauber et al, Nano Letters 2016 Optical properties of twisted graphene: Moon, Koshino, PRB 2013

s-SNOM on magic angle graphene (undoped!!)

Hesp et al., Nature Physics (in print) Devices: Daniel Rodan, Pablo Jarillo-Herrero (MIT)

Excitation ~0.2eV (~6µm) Hot spot under tip ~20nm

Device: 1.3°

Devices: Daniel Rodan, Pablo Jarillo-Herrero (MIT)

Collective excitations: interband plasmons

6.26um 5.87um 5.67um

1 µm

Changing wavelength

6.39um

6.54um

10.6um

Plasmon dispersion

For comparison: Single layer graphene plasmons

Analogy: quantum Hall bulk magnetoplasmons

Band structure

Interband Plasmons

See e.g. Fetter et al., PRB 2015, and many others

Electronic Bandstructure

Optical conductivity

Interband Plasmon dispersion

Hesp et al., Arxiv 1910.07893

Collective modes of correlated matter

Dipole-active collective excitations in moiré flat bands

Ali Fahimniya,¹,^{*} Cyprian Lewandowski,^{1,2},^{*} and Leonid Levitov¹

Harnessing Ultra-confined Graphene Plasmons to Probe the Electrodynamics of Superconductors

A. T. Costa,¹ P. A. D. Gonçalves,² Frank H. L. Koppens,^{3,4} D. N. Basov,⁵ N. Asger Mortensen,^{2,6,7} and N. M. R. Peres^{1,8}

IR/THZ near-field microscopy at 6K

Near-field photodetection for mid-infrared

Excite optically. Detect electrically

Thermo-electric field E_T :

$$E_T = S\nabla T$$

Current generated:

$$I = \frac{1}{R} \int_{0}^{L} E_{T} dx$$

Twisted Graphene

Near-field photocurrent: Small-angle twisted graphene (<0.1°)

Without reconstruction

With reconstruction

Yoo et al., Nat. Materials 2019

Near-field photocurrent: Small-angle twisted graphene (<0.1°)

10.6 um (116 meV), slightly doped

Near-field photocurrent: Small-angle twisted graphene (<0.1°)

10.6 um (116 meV), slightly doped

$$R(x) = -\frac{1}{\kappa W} \int dx' \frac{L_{\text{cool}}}{2} e^{-\frac{|x'-x|}{L_{\text{cool}}}} \partial_x S(x')$$

Photo-thermoelectric model

Outlook

Extreme regimes of strong light-matter interactions

- Access to forbidden transitions
- Infrared + THz light emission/lasing
- Optically mediated many-body effects
- Probing different types of polaritons
- Electrodynamics of superconductors

Arxiv 2006.00748

ERC Consolidator

Student and Postdoc positions available

Topological Nano-photonics

Chiral Berry Plasmons

Left Handed

Right Handed

Effective magnetic field inducted by circular polarised light

Justin Song, Mark Rudner, PNAS 2016 Low et al. PRB 2016

Twist opto-electronics

ICFO PhD: Niels Hesp

David Alcarez Hitesh Argawel **David Barcons** Sebastian Castilla Carlotta Ciancico Max Heithoff Krystian Nowakowski Varun Pusapati Samy Pandian

Postdocs: Antoine Reserbat-Plantey Itai Epstein lacopo Torre Hanan Herzig Sheinfux Roshan Kumar Sebastian Nanot Jianbo Yin

Collaborators: Javier Garcia de Abajo Joel Cox

Collaborators

UMINHO Nuno Peres

SDU Asger Mortensen André Goncalves

MIT Pablo Jarillo-Herrero Daniel Rodan-Legrain Yuan Cao Dirk Englund

IIT - SNS Marco Polini Pietro Novelli

NIMS (Japan) Kenji Watanabe Takashi Taniguchi

Harvard Efthimios Kaxiras Stephen Carr Shiang Fang

Vienna

Irati Calafell Lee Rozema Philip Walther

Manchester Vladimir Falko Mark Danovich

DTU Christian Thygesen Simone Latini Peter Boggild

Nanogune Rainer Hillenbrand Pablo Alonso Gonzalez

Columbia James Hone Dimitri Basov

San Diego Misha Fogler

Support

ERC Starting grant ERC Consolidator grant

European Research Council

Established by the European Commission

GRAPHENE

Fundació Privada CELLEX

Postdoc position: **Quantum emitters** Quantum technologies

